碳纳米管储氢研究

张立波 程锦荣² (¹合肥学院数理系 安徽合肥 230022 ²安徽大学物理系 安徽合肥 230039)

目前,环境保护和能源短缺是影响社会可持续 发展的两大重要问题。近代人类使用的能源主要是 煤炭、石油和天然气。经济的发展和人类生活水平 的提高,对这些一次性能源的需求量在迅速增加,它 们的储量在迅速下降。另一方面,这些化石燃料在 使用过程中,产生大量的有害物质,如 CO_x,NO_x, SO, 及碳氢化合物等,导致严重的环境污染。因此, 世界各国都在努力地开发洁净的新能源。

氢能以其资源丰富、可再生、热效率高和可以不 产生使用污染等特点格外受到关注。氢不仅可以从 城市煤气和天然气中得到,也可以通过生物细菌分 解农作物秸秆和有机废水得到,最主要是可以通过 电解方法把氢从水中分解出来,湖泊、江河、海洋就 是"氢矿"。使用氢能不产生任何有温室效应的化学 物质,也不会引起酸雨和烟雾。以目前世界各国都 在加紧研制的用氢作为能源的燃料电池汽车为例, 利用氢和氧化学反应,产生的只是电、热和水蒸气, 惟一的副产品就是水,真正达到零污染排放。水又 是制氢的原料,整个过程是循环和清洁的。燃料电 池车工作过程不涉及燃烧,无机械损耗,比蒸汽机、 内燃机等能量转换效率高得多。实验结果表明.汽 油机效率从油箱到车轮为 16%, 而氢燃料电池车为 60%,效率提高近4倍。

使用氢能包括氢的生产、储存和运输、应用 3 个 方面,尤其以氢的储存最为关键。据悉,美国能源部 研究氢能利用的经费中约有 50%用于氢的存储。 现有的储氢方法主要有:液化储氢、金属储氢、压缩 储氢、吸附储氢,但它们或因技术要求高,或因成本 高,或因存储能力低而不能广泛推广使用。对于车 用氢气存储系统,国际能源署提出的目标是重量储 氢密度(储氢重量比上系统重量)大于5%、体积储

跃迁频率与微波频率有了直接的关系。因此,这种 低不确定性的测量成为可能,更进一步说,使电子质 量精度 1998 年是 1996 年的 11 倍成为现实, me1998 年的推荐值是 5.485799110(12) ×10⁻⁴u,因此, R 精度的提高对于 m_e 精度的提高有着重要的意义; 16卷2期(总92期)

黄徳 τ^2 赵 τ^2

氢密度应在 50 千克/米3 以上。迄今为止、除液氢外 还没有一种固体储氢材料能满足这样的要求。

1991 年 5 月,日本 NEC 公司的饭岛澄男发现并 命名了碳纳米管。碳纳米管束具有丰富的纳米尺度 的中空管内腔、间隙孔,多壁碳纳米管还有管壁间 隙,这些都是可以储氢的天然微型容器。另外,碳纳 米管的化学性质稳定、质量密度小都符合作为储运 容器的要求。联想到此前对多孔活性碳和碳纤维等 碳吸附介质的储氢能力的研究成果,科学家们预感 到碳纳米管可能成为储氢的最理想材料。

碳纳米管结构特点

科学家根据用高分辨率扫描隧道显微镜观察到 的碳纳米管结构 认为碳纳米管可视为由六边形网 格组成的石墨片卷曲成的无缝纳米级圆筒,并提出 用手性矢量 $c = na_1 + ma_2$ 表征其结构特点(图 1), 其中 n 和 m 为整数, a_1 和 a_2 为石墨晶格矢量。从 石墨平面中一个碳原子指向另一个碳原子的矢量就

图1 石墨片及手性矢量

又如, 谱线的分布规律及分裂与里德伯常数 R、精 细结构常数 有关。因此 R 精度的提高对于物理 学及光学技术的发展起着极大的促进作用。

里德伯常数不仅自身很重要,而且还是决定许 多常数的基础、提高它的精度具有深远的意义。

是手性矢量。卷曲石墨片是沿着手性矢量进行的, 使手性矢量的始、末端重合就得到了碳纳米管。

n和 *m* 是表征碳纳米管结构的重要指数。*n*和 *m* 不同,则石墨片卷曲的方式不同,管子的直径也不 同。碳纳米的直径可以表示为 $D = a \sqrt{n^2 + m^2 + nm/}$,其中石墨晶格常数 a = 0.2456nm。手性角 $= \tan^{-1} | \sqrt{3} m/(2n+m) | ,0^{\circ} 30^{\circ}$ 。

按卷曲方式划分,碳纳米管可分为扶手椅管(*n* = *m*, =309、锯齿管(*m*=0, =09和手性管(*n m*且 *m* 0,0°< <309三种类型(图2(a)、(b)、(c))。按层数划分,碳纳米管可分为单壁碳纳米管和多壁碳纳米管。多壁碳纳米管由几层到几十层的同心管套叠而成(图2(d))。

碳纳米管储氢研究状况

1. 实验研究

碳纳米管储氢的实验研究在三个方面同时展 开,一是研究碳纳米管的制备方法,二是研究碳纳米 管的纯化和表面处理方法,三是研究碳纳米管储放 氢的最佳应用条件。

碳纳米管的制备

碳纳米管的制备方法较多,有石墨电弧法、催化 裂解法、激光蒸发石墨棒法、热解聚合物法、火焰法、 离子(电子)束辐射法和太阳能法等。目前,制备轴 向尺寸长、径向尺寸一致、离散分布的直碳纳米管阵 列是实验研究的主要课题。在此方面,中国科学院 物理研究所的"纳米材料与介观物理"研究小组取得 了举世瞩目的成就。他们利用内嵌纳米催化粒子的 介孔二氧化硅薄膜做基底,结合气相化学沉积方法, 使碳纳米管的生长成为可控,实现了碳纳米管的顶 部生长。因为碳纳米管由基底表面垂直向上生长, 从而形成了高密度、离散分布的定向碳纳米管阵列。 他们制备出的碳纳米管不仅具有面积大(3毫米 ×3 毫米)、管径均匀(约20纳米)、超长(达90微米)、管 间距清晰(约100纳米)、取向性好、底端自然开口的 物理特征,而且所得碳纳米管纯净、产量高、容易从 基底上取下(图3)。他们用此方法制备了世界上最 长的碳纳米管,长度达3毫米,比同期其他方法制备 的碳纳米管的长度提高了1~2个数量级。目前,实 验得到的单壁碳纳米管直径大多在数纳米左右,多 数分布在0.8~2纳米附近。能够制取并稳定存在 的最细的碳纳米管直径是0.4纳米;多壁碳纳米管 有几十层之多,内径多在5~7纳米。

图 3 定向碳纳米管阵列的 TEM 照片

实验研究表明,所有的制备方法必须有金属催 化剂的存在才能制备出碳纳米管。催化剂的种类、 不同催化剂的比例会影响制备碳纳米管的产额,但 不会影响其类型,对其直径分布也影响很小。

碳纳米管的纯化

去除碳纳米管中所含有的杂质是储氢实验研究 的另一个重要课题。实验制备的碳纳米管经常与碳 纳米颗粒、石墨碎片混合在一起,这对储氢的实验研 究结果会产生很大的影响,并且用过滤、色层分离、 超声波等常规方法很难将碳纳米管与其他形式的碳 分离。但是,其中的石墨碎片为多层状结构,其边缘 存在较多能量较高的悬挂键,极容易因发生氧化反 应而被纯化掉。其次,碳纳米颗粒为多面体结构,有 较大的曲率和较多五元环存在 .因而也有较高的反 应活性。而管状的碳纳米管主要由六元环构成,基 本没有悬挂键,能够在一定条件下稳定存在。因此, 采用合适的氧化剂,精确控制氧化反应的时间和氧 化剂的用量,可以将附着在碳纳米管管壁四周的杂 质氧化除掉。杨占红等人报道,采用体积比为31 的浓硫酸和浓硝酸的混合物,可以在半小时将碳纳 现代物理知识

米管快速纯化。单壁碳纳米管的纯化更困难些。由 于碳纳米颗粒与单壁碳纳米管的尺寸相仿并粘连在 一起,采用与多壁管相同的纯化方法,会造成单壁管 与碳纳米颗粒同时被氧化,因此单壁碳纳米管的纯 化必须进行预处理。日本学者提出了一种"水热初 始动力学提取法",可以得到纯净的单壁碳纳米管。

碳纳米管储氢

典型的储氢实验方法有两种。一是高压容积 法,实验装置由样品室、储气室、气源、真空系统、压 力传感系统、微机处理系统和加热系统组成(图4); 二是电化学充放电循环法,基本工作原理是将碳纳 米管做成一个工作电极,与一个辅助电极(通常是镍 电极)构成一个回路,组成双电极体系(图5)。

图 4 高压容积法储氢装置示意图

图 5 电化学储氢实验装置示意图

1997年,美国可再生能源实验室通过实验推测 出纯净单壁碳纳米管的重量储氢能力可达 5%~ 10%。1998年,美国加州理工大学的研究人员报道, 在80开及超过120大气压下,单壁碳纳米管的吸氢 16卷2期(总92期) 能力可达 8.0%。中科院金属研究所的成会明等人 用单壁碳纳米管,在室温、100 大气压下储氢达到 4.2%,并且 78.3%的氢在常温常压下可释放出来, 剩余的氢加热后也可释放出来,所用的单壁碳纳米 管可重复利用。因为他们所用的储氢方法在常温下 进行,更接近实用条件,引起了国际上的高度重视。 清华大学毛宗强等人也实现了在常温下碳纳米管的 储放氢实验,实验中的最高重量储氢能力达9.99%。 中科院金属研究所范月英曾报道,他们用自制的纳 米碳纤维获得了约 10%~12%的储氢容量。新加 坡国立大学的研究人员报道,在常温常压下,掺有 钾、锂的碳纳米管吸附储氢能力分别达到 14%和 20%,在较高的温度(300~423 开)下,所吸附的氢气 绝大部分可以释放出来。

实验中,科研人员发现在很低的压力下,单壁碳 纳米管已经开始微孔充填行为,具有典型的微孔性 质,纳米级的中空管腔有很强的毛细管力;多壁碳纳 米管具有典型的中孔吸附特征;碳纳米管的微孔孔 容对其储氢容量贡献较大,而堆积形成的大孔和中 孔与其储氢容量的关系不大;与金属储氢相比,碳纳 米管储氢具有容量大、释氢速度快,可在常温下释氢 等优点;碳管表面势和物理吸附在储氢过程中起重 要作用,在碳纳米管中掺入某些杂质对其吸附量有 重要作用甚至于决定作用;储存在碳纳米管中的氢 以氢气分子的形式存在。

2. 理论研究

普遍采用的研究方法是巨正则蒙特卡罗方法和 第一原理分子动力学方法。根据统计力学,碳纳米 管及其阵列和其中的氢可以看作巨正则系统,其化 学势、体积和温度一定,但粒子数可以变化。蒙特卡 罗方法模拟碳纳米管储氢,是以一定的概率模拟粒 子的坐标变化、粒子的产生和粒子的消灭,给出平衡 状态下系统的统计性质。能否得出正确的模拟结 果,模型中涉及的物质相互作用势是关键因素。以 密度泛函理论为基础的第一原理分子动力学方法, 则是通过求解运动方程计算相关的系统性质,得到 的结果既能反映系统的静态特性,也能反映系统的 动态特性。

到目前为止,碳纳米管储氢的理论计算与实验 测得的结果尚有一定的偏差,对碳纳米管储氢的机 制尚不完全清楚,但是,也得到了一些有意义的启 示。1999年,匹兹堡大学的研究人员发现,碳纳米 管阵列储氢的最佳管间距与温度有关,298 开时最 佳管间距为 0.6 纳米,77 开时最佳管间距为 0.9 纳 米。对于(9,9) 的单壁碳纳米管,5 ×10⁶ 帕压强下, 298 开和 77 开时的吸附量分别为 5 千克/米³ 和 55 千克/米³。2000 年,韩国研究人员用分子动力学方 法得到了碳纳米管管壁附近的氢吸附位形图(图 6),并预测(10,10)单壁碳纳米管的最大重量储氢量 能超过 14.3%。

图 6 碳纳米管管壁附近氢吸附位形图

从图中我们可以看到,由于管壁附近碳与氢的 作用力较强,氢分子分离为原子,并与管中的碳原 子形成化学键,即管壁附近碳氢吸附表现为化学吸 附。

图 8 碳纳米管阵列管间隙储氢截面图

我们运用蒙特卡罗方法和第一原理分子动力学 方法对碳纳米管及其阵列储氢进行了一系列的研 究,得到了一些新颖的结果。对不同手性的碳纳米 管的储氢模拟结果表明,碳纳米管的手性对其物理 吸附储氢量的影响极小;管径较小时,碳纳米管中的 氢可形成多层管状结构(图7)。单壁阵列管内的储 氢密度与同管径的单壁管相同;对碳纳米阵列管间 隙处的储氢模拟显示,管间距大于0.6纳米时,以方 阵和三角形两种方式排列的碳纳米管阵列,碳管外 部的氢均出现多层管状结构(图8)。管径和管间距 相同时,以三角形方式排列的碳纳米阵列管间隙处 有较大的储氢密度,管间距为1.7纳米时密度最大。 对双壁、三壁碳纳米管的模拟给出,管壁间距适当增 大时,管壁间的氢形成的管状层数增多(图9);当管 壁间距等于0.61纳米和0.88纳米时,储氢重量百 分比增加。当外管径固定时,随着多壁碳纳米管的 层数增加,其储氢重量百分比减小(表1)。

表1 双壁、三壁碳纳米管的储氢量比较

层数	固定的管半径(nm)	管壁间距(nm)	H/C重量比(%)
2	2.984(内)	0.34	8.14
		0.61	8.57
		0.88	10.38
3	2.984(中)	0.34	4.85
		0.61	6.44
		0.88	7.67

图 9 双壁、三壁碳纳米管储氢径向截面图

当前急需解决的问题

目前,碳纳米管储氢研究的实验结果离散性较 大,检测手段和表征方法的不同是造成这一情况的 主要原因。为了使理论研究和实验研究本身及它们 之间的研究结果有可比性,确定统一的表征方法是 当前头等重要的事情。对于理论研究,今后应更加 重视与实验的结合,多做定量研究,以对实验研究给 出具体的指导。