

显微镜是 微观研究领域 的科技工作者 观察了解微观 世界所必需的 科学研究工 具。根据被观 测对象、放大

倍数、分辨率、精密程度以及用途要求的不同,显 微镜可以分为不同种类。

一、普通光学显微镜

根据人眼睛的生理结构及其几何光学性质计算 得知,人的裸眼不能直接观察到比 10⁻⁴m 更小的物 体或物质的结构细节。然而普通光学显微镜的发明, 使人类的视觉得以延伸,借此人们可以观察到像细 菌、细胞那样小尺寸的物体。

学显微镜。但由于光波经透镜组合要产生衍射效应, 普通光学显微镜即使没有任何像差,它的分辨本领 也要受到衍射的限制,使得普通光学显微镜的分辨 率只能达到 10⁻⁷m。根据测量得知,由于光的衍射, 视场中被观察物体的表面会产生许多艾里斑,当如 图 2(b)所示一个艾里斑的中心与另一个艾里斑的第 一级暗环重合时,恰好能够分辨被观察物点;但若 物点之间的距离小于光波长的一半时,两个艾里斑 交叠程度增大,被观察物点的细节变得模糊不清,

21 卷第 3 期 (总 123 期)

多种显微镜介绍

张中卫

从而无法分辨,(如图 2 c)。因此需要依据瑞利判 据处理好透镜成像系统的孔径与光波长之间的相互 制约关系。另外,普通光学显微镜主要依据可见光 工作,可见光中紫光的波长最短,为400nm,因此 普通光学显微镜最小可分辨的两点间距不应小于 200nm,其最大放大倍数约为2000。这就是普通光 学显微镜的观察极限。

二、电子显微镜

如果能够进一步缩短光学显微镜的最小可辨间 距 200nm,被观察物点的最大放大倍数就会相应提 高,人们观察微观世界的视觉就会得到进一步的扩 展延伸。这就需要寻找比紫光波长更短的电磁波作 为工作媒质。在后来的大量的实验探索中,人们测 量得知,当加速电压升至几十万伏时,电子的波长 只有 10⁻³nm,比紫光波长小得多,所以用电子束作 为照明光源的电子显微镜,可获得比光学显微镜更 高的分辨率,成为引领人们进入微观世界的第二代 视觉扩展工具。

1924年法国物理学者德布罗意指出,微观粒子除了具有粒子性外,还具有波动性,并且能量越大,波长越短。由此科学家便把目光投向了电子:如果

用高能电子束代替光束,并且电子束的波长远小于 光束的波长,就可以大大提高显微镜的分辨率。在 此思路指导下,20世纪20年代末,鲁斯卡经过实 验探索,利用电磁场控制电子束的运动方向,将通 过样品且带有样品微观结构信息的电子束再打到荧 光屏或照相底片上,得到分辨率极高的图像,终于 在1933年研制成功世界上第一台电子显微镜,开创 了人类研究微观世界的新纪元。鲁斯卡因此分享了 1986年的诺贝尔物理学奖。

电子显微镜按结构和用途主要分为透射式电子 显微镜和扫描式电子显微镜。与光镜相比,电镜用 电子束代替了可见光,用电磁透镜代替了光学透镜 并使肉眼不可见的电子束在荧光屏上成像。

透射式电子显微镜 诞生于1933年,其光路 与普通光学显微镜相仿 (图 3、图 4),常用于 观察那些用普通显微镜 所不能分辨的细微物质 结构。它的分辨率为 0.1~0.2nm, 放大倍数可 从几十倍连续地变化到 几十万倍。其镜筒的顶 部是电子枪, 电子从钨 丝热阴极发射出,连续 通过两个聚光镜使电子 束聚焦。电子束透过样 品后经过聚焦与放大所 产生的物像,由物镜成

图3 透射式电子显微镜结构图

像于中间镜上,再通过中间镜和投影镜逐级放大, 成像于荧光屏或照相干板上进行观察。改变中间镜 的焦距,即可在同一样品的微小部位上得到电子显 微像和电子衍射图像。在这种电子显微镜中,图像 细节的对比度是由样品的原子对电子束的散射形成 的。由于电子易散射或被物体吸收,故穿透力弱, 必须将样品制备成非常薄的超薄切片(通常为50~ 100nm)。往往从图像可知,样品较薄或密度较低的 部分,电子束散射较少,这样就有较多的电子通过 物镜光栏,参与成像,在图像中显得较亮;反之, 样品中较厚或较密的部分,在图像中则显得较暗。 如果样品太厚或过密,则像的对比度变差,甚至会 因吸收电子束的能量而被损坏。因此,要求将样品 制备超薄。

图 4 透射式电子显微镜(右)与普通光学显微镜(左)的 结构及成像原理对比简图

图 5 是透射式电子 显微镜下的物质形态。

扫描式电子显微镜 诞生于 1942 年,它是用 极细的电子束在样品表 面扫描,将产生的次级 电子用特制的探测器收 集形成电信号,经显像 管在荧光屏上显示物体 (图 6)。显像管的偏转 线圈与样品表面上的电 子束保持同步扫描,这

图 5 由透射电子显微镜拍摄的 葡萄状球菌的病毒细胞,放大倍 数 50000×

样显像管的荧光屏就显示出样品表面的形貌图像。 扫描式电子显微镜主要用于观察固体表面的形貌, 产生的图像有很强的立体感,也可以与 X 射线衍射 仪或电子能谱仪相结合,构成电子微探针,利用电 子束与物质相互作用所产生的次级电子、吸收电子 和X射线等信息分析物质成分。与透射式电镜相比, 扫描式电子显微镜的电子束不穿过样品,仅在样品 表面扫描激发出次级电子,要求样品表面的导电性 良好,因此不必将样品制备很薄。

扫描式电子显微镜的分辨率,主要取决于在样 品表面上扫描时所激发出的次级电子束的直径。放 大倍数是显像管上扫描幅度与样品上扫描幅度之 比,可从几十倍连续地调整到几十万倍。图7是用 现代物理知识

 \cdot 20 \cdot

扫描式电子显微镜观察到的物质形态。

图 6 扫描式电子显微镜原理结构图

在 2008 年 11 月 21 日的《科学》杂志上, 美国科学家 Ahmed Zewail 发表论文宣称, 他们制造出了第一台四 维电子显微镜,能够用 来观察原子尺度物质结 构和形状在极短时间内 所发生的变化。由于一

所发生的规定的。 那般或不是一个的关系。 一般都会的一个的关系。 一般都会的一个的一个的一个的一个的一个。 一般都会的一个的一个的一个。 一般,我们是一个的一个的一个。 一个的一个,我们是一个的一个。 一个,我们是一个的一个,我们是一个的一个。 一个,我们是一个的一个,我们是一个的一个。 一个,我们是一个的一个,我们是一个的一个。 一个,我们是一个的一个,我们是一个的一个。 一个,我们是一个,我们是一个的一个。 一个,我们是一个,我们是一个,我们是一个。 一个,我们是一个,我们是一个,我们是一个, 一个,我们是一个,我们是一个,我们是一个。 一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个。 一个,我们是一个,我们是一个,我们是一个,我们是一个,我们是一个。 一个,我们是一个,我们也是一个,我们也

图 7 用扫描式电子显微镜拍 摄的硅藻,放大倍数 8000×

图 8 用四维电子显微镜拍摄的纳米 鼓动现象

象(图 8)。科学家表示:"这一全新的四维观测技 术可以非常直观、清晰易懂地表现引发物质结构、

21 卷第 3 期 (总 123 期)

形态、纳米运动现象的原子级别的变化。"并有望进 一步将这一观测手段引入细胞内生物成像领域。

总之,至诞生后长达四十多年的时间内,电子 显微镜技术一直是研究物质微细结构的重要手段。 但电子显微镜存在着诸多不足,例如高速电子由于 能量大易于透入物质深处,低速电子能量小又容易 被周围的电场力和洛伦兹力所偏转,故电子显微镜 难以精确揭示物质的表面结构。但表面物理的迅速 发展又急需一种能够观测物质表面结构的显微术, 因此 20 世纪 80 年代诞生了第三代显微镜即扫描探 针显微镜。

三、扫描探针显微镜

扫描探针显微镜(SPM)种类繁多,是 20 世纪 80 年代发展起来的扫描隧道显微镜及其基础上发 展起来的各种新型扫描探针型表面分析仪器(原子 力显微镜 AFM,激光力显微镜 LFM,磁力显微镜 MFM 等等)的统称,是综合运用光电子技术、激 光技术、计算机高速采集和控制及高分辨图形处理 技术等现代科技成果的光、机、电一体化的高科技 产品。

SPM 以其分辨率极高(原子级分辨率)、实时、 实空间、原位成像,对样品无特殊要求、可在大气、 常温环境甚至是溶液中成像、同时具备纳米操纵及 加工功能、系统及配套相对简单、廉价等优点。它 们都是通过一个探针相对样品扫描,根据探针与样 品之间的电、光、力、热等物理量之间的关系,获 取样品的表面或内部信息。其具体可以分为以下几 种典型:

(1) 扫描隧道显微镜

扫描隧道显微镜(STM)是根据量子力学中的 隧道效应原理,通过探测固体表面原子中电子的隧 道电流来分辨固体表面形貌的新型显微装置。它是 由实验物理学家格尔德·宾宁和海因里希•罗雷尔于 1981 年研制成功,从此人类实现了从半导体技术到 纳米电子学等许多领域的重大发现。他们两人因此 获得 1986 年的诺贝尔物理学奖。

STM 的工作原理是量子力学的隧道效应,这是 微观粒子具有波粒二象性的表现。工作过程中,STM 的原子限度的极细探针与待测样品的表面构成两个 电极(图9、图10),这两者的间距小于1nm时, 之间构成势垒,加在它们之间的电压U促使探针上 的电子可以依据量子隧道效应到达待测样品的表

· 21 ·

面,形成隧道电流。针尖在样品表面扫描时,同步 采集隧道电流和针尖运动的数据,经计算机处理在 屏幕上显示样品的三维图像。有人形象地称之为"盲 人摸象"。

图 10 STM 工作原理图

然而,由于电流可以在十亿分之一秒中发生变 化,因此 STM 的测量速度极其缓慢。而且限制因素 并不仅仅在于信号方面,还在于信号分析中涉及的 基本电子学。理论上,STM 可以跟电子通过隧道一 样迅速地收集数据——以一千兆赫的速率(每秒 10 亿周波)。然而,典型 STM 的运行速度常常因电线 中的电容或储能电容器的限制而减慢至 1 千赫(每 秒 1000 周波),而这些电线正是其信息读出电路系 统的组成部分。

在 2007 年,来自美国康奈尔大学和波士顿大学 的科学家宣称,他们开发了一种被称为反射计的新 技术,能够使 STM 的成像速度加快 100 倍,可以清

· 22 ·

晰地观测到原子的细微变化情况。该新技术通过增加一个额外的射频波源,并通过一个简单的网络向 STM 发送一个波,然后依据返回至射频波源的波的 特点,探测隧道接口(即探针和固体表面之间的距离) 的电阻。这是一个简单的改动,其原理基于目前在 纳米电子学中应用的一种测量方法,却使得 STM 拥 有了新的能力——包括感应单个原子大小的小点的 温度,以及探测精确到 0.000000000001 米(这是 比原子直径小3万分之一的距离)的微型变化。该新 技术还为原子分辨率温度测量法和运动探测法提供 了可能,可以用来测量比原子小3万倍距离的运动。 有了射频配合,速度就可以增加 100 到 1000 倍,几 年后将出现一大批射频扫描隧道显微镜,可用于进 行各种各样的显微实验。

总之,STM 的出现,使人类能够实时观察、了 解单个原子在物质表面的排列状态和与表面电子行 为有关的物理、化学性质,并且因其可直接观察物 体表面原子结构而不会对样品表面造成任何损伤, 而被广泛应用于表面科学、材料科学、生命科学等 领域,并成为纳米加工的关键技术。例如,STM 不 仅可以在各种样品表面上进行直接刻写、光刻以及 诱导淀积和刻蚀等,它还可以把吸附在表面上的吸

作用,甚至有可能

图 11 用 STM 排列成的"原子算盘"

用一个个原子构造分子或者把分子分解成一个个原 子。STM 在这些方面的应用,为利用不同材料的微 小粒子来构造器件的研究提供了非常有用的工具。

(2) 原子力显微镜

原子力显微镜(AFM)是在 STM 基础上迅速 发展起来的又一类扫描探针型显微镜(图 12)。它 有一个对微弱力极敏感的微悬臂,一端固定在作为 其动力源的压电陶瓷管上,另一端有一微小的针尖, 针尖与样品之间有一定的接触,针尖原子与样品原 子之间有 10⁻⁸~10⁻⁶牛顿的排斥力,扫描时控制该力

现代物理知识

为恒力,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面,并在垂直于样品的表面方向,随样品表面凹凸不平而起伏运动,再依据隧道电流检测法,用 STM 测量微悬臂对应于各扫描点的位置变化,从而获得样品表面的形貌信息。后来该方法被改成用一束激光照到悬臂上,其上下起伏可由激光束的变化所反映并被反射到接收装置中(图 13)。根据针尖与样品的接触情况,AFM 有两种扫描模式:接触模式与轻敲模式,前者指针尖在扫描过程中始终与样品接触,后者则是利用悬臂的高频振动使针尖间断地与样品接触。

图 13 原子力显微镜扫描电路

AFM 的成像原理决定了它的某些优点是其他21卷第3期(总123期)

显微技术所不具备的:由于可在液态环境中工作, 故 AFM 可在生理条件下对活细胞进行观察,并可 实时观察某些动态的生化反应;分辨率极高,横向 分辨率最高可达 0.1 nm,纵向分辨率甚至可达 0.01 nm,已超过电镜的分辨本领;成像时间短,可 捕捉一些快速反应过程。由于这些优点,使 AFM 的应用早已不局限在材料科学领域,而越来越多地 被应用于生命科学研究的各个方面。

(3) 扫描离子电导显微镜

扫描离子电导显微镜 (SICM) 是一种用于获取 表面上覆盖有电解液的非电导体表面图像的扫描探 针显微镜,专长于生物学和电生理学研究,例如对 其他显微镜无法观察的生物膜这种非导体的表面图 像的获取。其探针是一个充满电解液的微型滴管, 非导电的样品放在充满电解液的容器底部,两电极 分别插在微型滴管和电解液容器内,将滴管探针 调节到样品表面附近,有离子电流通过时,可监 测两电极之间的离子电导变化。探针接近样品表面 时允许离子流过的空间减小,从而离子电导随之减 小: 滴管探针横向扫描时, 通过反馈控制电路使探 针上下移动,只要实现探针和样品表面的距离恒 定,以保持电导恒定,从而探针运动的轨迹给出了 样品表面的形貌。SICM 探针并不接触样品表面, 可对柔软的非导体成像而不损伤表面,分辨率可达 0.2 微米。

(4) 磁力显微镜

磁力显微镜(MFM)(图 14)可以同步得到磁 体的高分辨率形貌像和磁力分布梯度像,自从问世 后就成为研究磁性介质与材料的有力工具。MFM 是对样品表面的磁力空间分布成像的,可以用来对 天然及人工制作的磁畴结构进行成像。其成像原理 与 AFM 相同, 通过检测依赖于针尖与样品间的磁 场变化所引发的微悬臂共振频率的变化,获取磁性 针尖与样品杂散磁场之间的相互作用力, 生成样品 表面漏磁场的精细磁力梯度分布图,从而得到样品 的磁畴结构。MFM 的探针针尖上蒸镀了一层铁或镍 的磁性薄膜,针尖带有磁性,磁性方向垂直于样品表 面。当磁性探针靠近磁性样品表面时,两者的表面 之间会产生磁性作用力,若设定针尖与样品之间的 距离为一固定值,当磁性探针扫描磁性样品表面时, 表现为引力或斥力,是依磁性样品表面的磁性分布 而定,而作用力的大小可决定磁性样品表面磁性大

 $\cdot 23 \cdot$

小,这样人们就可以取得磁性样品表面磁性分布影像,并观察到纳米尺度的磁性分布。

图 14 磁力显微镜系统结构

MFM 扫描样品的时候,系统工作于非接触模 式,扫描而成的像中包含了表面形貌及磁性质的信 息(图15),如何区别这些信息,主要取决于针尖与 样品间的距离,这个间距一般为 10~200nm。因为在 这个范围内,除了部分范德华力干扰外,电磁力占 了绝对优势,针尖因为原子间的磁力所发生作用的 距离要大于原子间范德华力发生作用的距离,所以 当针尖靠近样品表面时得到的是形貌信息,当针尖 与样品间距增大, 磁力便显现出来, 从而扫描获得 的 phase 像反差以磁力信号为主。另外,磁探针的 针尖磁特性、扫描高度和样品表面的平整度是影响 MFM 图像质量的主要因素。比如,若选取的 MFM 针尖和样品的磁性不匹配,针尖和样品之间会形成 磁化干扰,得到的磁力形貌图将由表征正常畴结构 的杂散场衬度和干扰形成的磁化衬度叠加而成。所 以用不同的针尖与样品间距的匹配,是分离表面形 貌与磁力像的办法之一。

图 15 磁力显微镜所成像中形貌图与磁力图的区别

MFM 主要应用于磁介质与材料的研究,前者 · 24 ·

包括磁畴结构、表面形态、媒体噪声、读写磁头,磁 记录体系等,而后者包括亚表层磁结构、"软"磁材 料和永磁材料的退火影响等。

(5) 激光力显微镜

激光力显微镜(LFM)的探针是一根半毫米长的 钨丝或硅,其尖端的长度在 50nm 以下,在探针的 底端装有一个压电能量转换器,可利用交流电方向 变换的特性使探针作受迫振动。当探针的振动频率 接近其共振频率时,探针产生共振,对驱动信号进 行放大。把这种受迫振动的探针调节到距离样品表 面 2~20nm 的范围内,探针与样品表面之间会产生 微弱的吸引力,因而导致探针的共振频率降低,驱 动频率和共振频率的差距增大,引起探针的尖端振 幅有不同程度的减小。当针尖与样品表面的距离一 定时,有相应的针尖振幅与之对应。将这种振幅的 变化用光学测量法探测出来,据此可推断出样品表 面的形貌起伏变化。

(6) 静电力显微镜

静电力显微镜(EFM)和磁力显微镜(MFM)原理 相似,它采用导电探针以抬起模式对样品表面进行 扫描。EFM 又是激光力显微镜(LFM)的扩展, 不同的是 EFM 使用带有电荷的探针,在共振频率附 近做受迫振动。由于针尖和样品可以构成一个平行 板电容器,它们分别相当于两块极板,因此样品上 方存在电场梯度,当针尖在样品表面扫描时,探针 与样品表面电场之间的静电力会引起探针微悬臂共 振频率的变化,从而导致其振幅和相位的变化,这 种静电力可以达到 10⁻¹⁰N,对应于 10⁻¹⁹F 的电容。 根据这一现象,就可以利用扫描后获得的静电力图 像来研究样品的表面信息。

EFM 可用于研究样品表面的电荷载体密度的 空间分布变化情况,可通过非接触方式研究微电子 电路在极小尺度上的电特性,可用来探测其静电场 的性质。这种技术被称作"电压探针"。

(7) 扫描热显微镜

扫描热显微镜(SCTM)主要用于探测样品表面的热量散失,可测出样品表面温度在几十微米尺度上小于万分之一度的变化。它所用的探针是一根表面覆盖有镍层的钨丝,直径只有约 30nm,镍层与钨丝之间有一绝缘层,只在探针尖端两种金属才结合在一起,构成热电偶结,能产生与温度成正比的电压(图 16)。

现代物理知识

图 16 扫描热显微镜工作原理

SCTM 工作时,首先将探针稳定在样品表面, 通直流电加热结点。当探针散失到空气中的热量等 于电流提供的能量时,尖端的温度就稳定下来,这 时探针比环境温度高几度。将针尖逼近样品,热量便 从针尖向样品流失的速率增加。由于样品一般是固 体,其传热性能比空气好,探针的热量散失速率将增 加,于是探针尖端开始冷却,热电偶结上的电压也随 之下降。扫描时通过用反馈回路调节探针与样品间 隙,从而保持热电偶结恒温,实现控制恒温扫描,从

而针尖随样品表 面的起伏运动就 描绘出样品表面 的形貌结构。用 SCTM 获得了在 玻璃基底上的红 细胞的表面形貌

(图17)。

图 17 用扫描热显微镜描绘获得的 红细胞表面形貌

(8)电化学扫描隧道显微镜与电化学原子力显 微镜

电化学扫描探针显微镜(SECPM)是近 20 年来, 人们将 SPM 应用于电化学体系的研究中发展起来 的系列扫描探针型显微镜,它们具有比 SPM 更高级 的空间分辨率、多适应性、化学灵敏性和易操作等 特点,使之适用于研究各种实时和原位的电化学过 程。电化学扫描隧道显微镜和电化学原子力显微镜 是 ECSPM 的两种主要代表。

其中,电化学扫描隧道显微镜(ECSTM)(图 18)是人们将 STM 与电化学电解池结合研制而成, 用于水溶液中物质表面观察、反应监控、原子操纵

21 卷第 3 期 (总 123 期)

以及单分子性质测试,它能够在电化学控制下的溶 液中对电极表面进行原子和分子级分辨率的扫描隧 道成像。在过去 20 年的时间里, ECSTM 已经在水 溶液电极表面研究、特殊离子吸附和金属沉积等方 面得到了广泛应用。最近,科学家们又报道了 ECSTM 技术在固液界面有机分子和超分子吸附方 面所取得的成就。

图 18 电化学扫描隧道显微镜结构示意图

电化学原子力显微镜(ECAFM)是人们将 AFM 与电化学电解池结合研制而成,可以在电化学控制 下的溶液中对电极表面进行纳米分辨率的成像。尽 管纳米科技领域仍面临着巨大的挑战,但随着 ECAFM 研究的持续深入,人们有理由相信,在不 久的将来,构筑具有精细结构和功能的纳米器件将 不再是梦想。

(9) 光子扫描隧道显微镜

光子扫描隧道显微镜(PSTM) 1989 年研制成功。其理论基础源于近场光学。通过用探针探测样品表面附近被内全射光所激励的瞬衰场,从而获得样品表面的结构信息。

PSTM 基本工作原理是隐失波的产生和探测。其原理和工作方式与 STM 相似,不同的是 STM 利用电子的隧道效应,PSTM 则是利用光子 的隧道效应。PSTM 用光纤尖端作为探针,使入射 激光束在入射角超过全内反射临界角条件下在样 品表面产生隐失波。当光纤尖端进入样品表面隐 失波区域时,破坏了全内反射,产生局域"全内反射 受抑",而使光子耦合进探针,形成光子隧道(图 19、图 20)。

 $\cdot 25 \cdot$

图 19 光子扫描隧道显微镜结构示意图

图 20 光子扫描隧道显微镜 PSTM 成像工作原理图

PSTM 的分辨率远小于入射光的半波长,目前 已提高到 1%波长以上,突破了普通光学显微镜半 波长极限的限制。其分辨率主要由探针形状决定, 并不取决于入射光波长。向被测物体照射任意波长 的光,只需利用该装置测定产生于物体表面的限定 区域瞬息光的功率分布,就可获得物体表面的微观 形貌图和内部折射率图像,因此它具有纳米级三维 分辨本领,是普通光学显微仪器所不可比拟的。

故 PSTM 是一种超越衍射极限的超分辨率显微 镜,能收集到样品的具有亚波长的近场信息,不会对 样品产生破坏,达到无损伤检测的效果,对各种非 导体材料,特别是在生物材料的检测、成像方面很 有发展前途。另外还可用于化学、超微晶体工程学 等极其广泛的加工领域;进行生物微粒子的运动控 制,甚至原子操作,在探针端部的瞬息光场捕获真空 中游离的原子也是有可能的。 (10) 弹道电子发射显微镜

弹道电子发射显微镜(BEEM)是在扫描隧道显 微镜(STM)的基础上发展起来的,不仅继承了 STM 具有的表面分析特性,更重要的是能够对界面系统 进行直接、实时及无损伤地探测并具有纳米级的空 间分辨率。被测样品由基极(如金属膜或金属/半导 体等)和集电极(如半导体/半导体等)构成,二者 形成被探测的界面(图 21、图 22)。当针尖被调节 到接近异质结表面时通过真空隧道效应,针尖向金 属/半导体发射弹道电子。通过观察针尖扫描时各点 的基极-收集极电流 Ic 和 Z 电压 Vz,可以直接得到 表面下界面结构的三维图像和表面形貌。

图 22 弹道电子发射显微镜工作过程示意图

按照 STM 的工作原理,当探针与样品的距离 非常近时,由于探针的电势场高于样品,探针会向 样品发射电子,这些隧道电子进入样品到达界面时, 虽然大部分电子的能量由于被衰减而被样品势垒反 弹回来,但是仍有少量能量较高的分子能够穿透界 面到达下层材料,这些穿透过界面的分子成为弹道 分子。由于弹道分子在穿过界面时携带了许多有关 界面的信息,因此 BEEM 为界面的研究提供了有价 值的数据。

现代物理知识

 \cdot 26 \cdot

四、激光共聚焦断层扫描显微镜

激光共聚焦断层扫描显微镜,也称为激光共 聚焦扫描显微镜(简称 LSCM)(图 23),是 20 世纪 80 年代末发展起来的一种高精度显微镜系 统。LSCM 是光学显微镜的一种,但具有其他光 学仪器所无法比拟的优点,如分辨率高、样品制 备简单、可以对活细胞进行无损伤性动态记录、 通过断层扫描和三维重建可以得到样品的立体图 像,并对样品中的观察目标进行空间定位等,目 前已广泛应用于几乎所有涉及细胞研究的医学和 生物学研究领域。

图 23 激光共聚焦扫描显微镜结构原理图

其构成的主要系统包括激光光源、自动显微镜、 扫描模块(包括共聚焦光路通道和针孔、扫描镜、 检测器)、数字信号处理器、计算机以及图像输出设 备(显示器、彩色打印机)等。辅以各类荧光探针 或荧光染料与被测物质特异性结合,即在荧光成像 基础上加装激光扫描装置,利用计算机进行图像处 理,使用紫外光或可见光激发荧光探针,从而得到 细胞或组织内部微细结构的荧光图像。

LSCM 已经成为生物学研究中不可缺少的研究手段。它不仅可用于观察固定的细胞、组织切片,还可对活细胞的结构、分子、离子进行实时动态的观察、检测及三维重建。利用 LSCM,可以对样品进行断层扫描和成像,进行定性、定量、定时和定位研究,可以无损伤地观察和分析细胞、组织的三维空间结构。同时,LSCM 也是活细胞的动态观察、多重免疫荧光标记、离子荧光标记、直接荧光标记观察的有力工具,为实验研究提供

21 卷第 3 期 (总 123 期)

了更加灵活、多样的手段和方法。因此,LSCM 是 普通光学显微镜质的飞跃,是电子显微镜的补充。

图 24 激光共聚焦扫描显微镜 LSCM 成像光路图

器,该点以外的任何发射荧光均被该针孔阻挡。照 明针孔与探测针孔对被照射点或被探测点来说是共 轭的,这就是激光共聚焦扫描显微镜系统中共焦的 真正含义。因此,在成像过程中针孔起着关键作用, 针孔直径的大小不仅决定是以共聚焦扫描方式成像 还是以普通光学显微镜扫描方式成像,而且对图像 的对比度和分辨率有重要的影响。LSCM 利用计算 机采集和处理光信号,并利用光电倍增管放大信号, 使灵敏度大大提高。计算机采用点扫描技术逐点扫 描样品,针孔后的光电倍增管也逐点获得对应光点 的共聚焦图像,并将之转化为数字信号传输至计算 机,最终在屏幕上聚合成清晰的整个焦平面的共聚 焦图像。一个微动步进电机控制载物台的升降,使 焦平面依次位于标本的不同层面上,可以逐层获得 标本相应的光学横断面的图像,从而得到样品不同 层面连续的光切图像。因此,学者们将从共聚焦显 微镜系统获得的连续光切图像比喻为显微 CT。最后 利用计算机图像处理及三维重建软件模拟出样品真

实的立体结构。 图 25 是利用 LSCM 对活体细 胞样品同一部位 拍摄的实验结果 对比图。左图由

非共焦的光学传

图 25 利用激光共聚焦扫描显微镜拍摄 的实验结果。左图非共焦,右图共焦

多叶光栅在放疗中的应用

景 佳 徐元英 许良凤 林 辉

放射治疗机理

肿瘤的治疗方式主要有手术、化疗和放疗三种, 其中手术和化疗都是局部治疗手段。手术可以切除 病灶,对正常组织在可视的情况下予以最大限度的 保护;但是,手术过程中受医生主观视力判断的限 制,容易将一些亚临床病灶遗留在体内,造成术后 肿瘤的快速生长。化疗的作用范围广,但是对1cm³ 以上的肿瘤功效差,特别是对良性和恶性细胞特异 性识别不够,副作用较大。放射治疗是治疗恶性肿 瘤的重要手段之一,同手术相比,放疗不用开刀, 无出血、无感染,为许多肿瘤患者提供一个新的选 择。

放射治疗的机理就是用高能的 X 射线或电子 束、质子束的能量杀死癌细胞,从而达到治疗的目 的。放射治疗的目标是最大限度地将放射线集中照 射到肿瘤(靶区),而周围的正常组织及器官应受到 最小的剂量。适形放疗就是按照肿瘤及其亚临床区 域(即潜在的肿瘤侵犯区域)的投影形状设计射野, 使得射线只对病灶区域进行照射,对正常组织进行 保护。适形放疗技术能明显提高肿瘤的局部控制率, 降低正常组织的并发症,提高治疗效果。而进一步 采用的调强适形放射治疗(IMRT)能更好地分开靶 区和周围正常组织的剂量,达到了靶区内剂量的均 一照射。

多叶光栅的原理

多叶光栅就是随着适形放射治疗理论的提出而 发展起来的。多叶光栅(multi-leaf collimator, MLC), 通常是用多个片状的光栅叠在一起以代替加速器上 一整块的光栅,每片光栅由衰减放射性强的材料制 成,通过步进电机控制其移动,其移动的范围可以 超过射野中线(如图 1)。这种在计算机控制下的 多叶光栅系统给放射治疗带来了很大的方便,将适 形放疗技术提高到又一新的水平,它几乎具备了传 统方法的所有优点,它不但能在计算机的控制下改 变射野的形状,以达到产生准确适应肿瘤形状的射 束孔,进行三维适形放疗的目的,还能通过常规分 割、超分割、加速超分割以及低速分割等治疗方式, 来完成目前的一般常规治疗机(加速器、钴-60 机、γ 刀等)所不能完成的任务,无论其精度、疗效均优于 常规治疗机。

图 1 多叶光栅形成不规则射野

多叶光栅的基本单位是叶片,相对的一对叶片 可形成一矩形的子野,所有叶片的子野组合形成一 个较大的射野。由于所有叶片可单独控制,所以这 种光栅易于形成各种形状不规则的射野。多叶光栅 的出现,不仅使成野技术发生了质的飞跃,而且随 之出现了许多适形照射技术。多叶光栅与加速器的 连接方式主要有内置式和附加式两种。在内置方式 中,多叶光栅与加速器连为一体,是机头的一部分。 常规准直器(JAW)可以保留也可以全部或部分去掉。 在附加方式中,多叶光栅被设计成可与加速器配套 使用的附件,一般可像挡块那样安装在机头的下方 (如图 2)。

由于金属钨对放射线有较强的防护性能,所以 多叶光栅叶片的材料多数都是由金属钨制成。机械 结构大致如下所述:整个多叶光栅包括两组叶片,

统方式获得,右图为调整针孔共聚焦后获得的图像,明显可见左图相应部位模糊不清,而右图非常清晰, 且立体感十足。 另外,LSCM 所观测的样品必须经过特殊的荧 光染色,所以其应用受限于荧光探针技术的发展。 (浙江林学院理学院物理系 311300)

现代物理知识

 $\cdot 28 \cdot$