多信使天文学

尤志强¹ 朱兴江²

(1.河南省科学院引力波天文研究所 450046; 2.北京师范大学文理学院 519087)

17世纪的某个夜晚,当微弱的星光穿过伽利略的望远镜,人类开启了系统性、科学性、专业性地探索宇宙的步伐。然而,直至20世纪初,天文学观测都局限于可见光波段——电磁波频谱中的一小部分。后来,无线电技术的兴起使人类首次在射电波段探测到宇宙信号。1932年卡尔·央斯基发现来自银河系中心的射电辐射,标志着射电天文学的诞生中。此后,红外、紫外波段的观测相继开展,特别是随着航天技术的发展,空间望远镜的部署避开了地球大气对高能电磁波的吸收,提供了大量X射线和伽马射线观测数据,天文学进入了多波段时代。

每一个新的波段的开启,往往伴随着天文学新 领域的诞生。例如,红外波段观测揭示了恒星形成 的尘埃包层;X射线观测揭示了中子星和黑洞的剧 烈吸积过程:伽马射线观测则揭示了极端的爆发现 象——伽马射线暴(GRB)。随着观测手段的拓展, 多波段的研究提供了宇宙天体更为全面的信息,人 类对宇宙的认识逐渐深入。但是,宇宙中的某些现 象,尤其是发生在致密天体内部或高度不透明区域 的物理过程,如黑洞并合、中子星碰撞或超新星爆 炸,其电磁波往往难以逃逸。这促使科学家寻找其 他"信使"。1956年,弗雷德里克·莱因斯和克莱德· 科温首次在核反应堆实验中探测到中微子[2],这种 几乎不与物质作用的粒子被迅速认为是探索宇宙 的潜在工具。由于这项工作首次确认了中微子的 存在,弗雷德里克·莱因斯因此获得了1995年诺贝 尔物理学奖。1987年,来自大麦哲伦星系的超新星 SN1987A爆发,地球上的三个中微子探测器几乎同 时探测到约20个中微子事件。紧接着,两个小时 后,光学信号到达地球[3]。这次中微子与电磁波的 联合观测不仅验证了核心坍缩超新星的理论模型, 也凸显了多信使天文学的巨大潜力。另一类非电 磁信使是宇宙线,即高能带电粒子,它们早在1912 年被维克托·赫斯通过高空气球实验发现^[4]。由于 其在传播过程中受星际磁场偏转,难以追踪源头, 因此广泛用于研究宇宙中极端粒子加速机制。

2015年9月14日,LIGO首次直接探测到两个恒星级黑洞并合产生的引力波信号GW150914^[5]。这一发现不仅证实了爱因斯坦广义相对论中关于引力波的预言,更是集齐了天文观测的最后一种信使,人类探索宇宙的能力再次迎来质的跨越。

1. 引力波多信使天文学

引力波天文学的诞生为我们观察宇宙提供了前所未有的新视角。2017年8月17日,LIGO和Virgo联合探测到的双中子星并合事件GW170817^[6],不仅成功捕捉到该事件的引力波信号,还在其后2秒由 Fermi和 INTEGRAL卫星探测到伽马射线暴(GRB 170817A),11小时后被Swope等望远镜发现了光学对应体AT2017gfo,随后在X射线、紫外、射电等多个波段也捕捉到清晰的余辉信号^[7]。这是人类历史上首次实现从引力波到电磁波全波段联合观测的"多信使天文学"事件,也为研究中子星物理、伽马射线暴、元素核合成与宇宙学提供了全新可能。

通过 GW170817事件的多信使观测,科学家首次确认至少部分短伽马射线暴起源于中子星并合,验证了重元素如金、铂可能主要产生于中子星并合的抛射物中。此外,事件中观测到的千新星亮度的演化与理论模型高度吻合,进一步证实了并合抛射

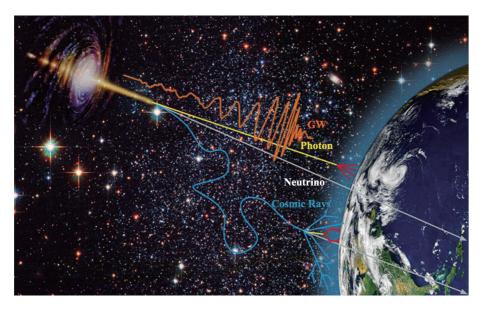


图1 多信使天文学示意图

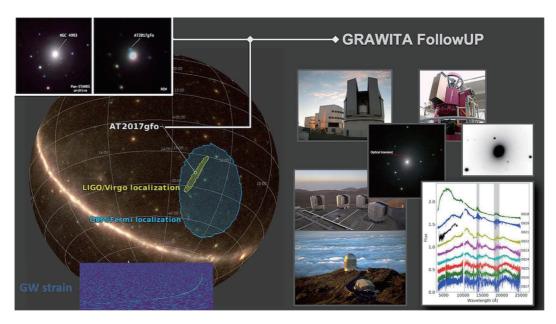


图2 GW170817引力波事件及其电磁波对应体观测。图源: Caltech/MIT/LIGO Lab & The GRAWITA Collaboration 官网

物中存在大量富中子的重核物质,其衰变提供了所观测到的辐射能量^[8]。同时,该事件也是人类首次观测到离轴相对论喷流的直接证据,GRB 170817A的余辉光变曲线表现出与传统短伽马暴不同的缓慢上升和晚期峰值特征,被解释为结构化喷流在不同视角下的观测结果,从而拓展了我们对喷流几何和动力学的认知^[9]。随着LIGO与Virgo引力波探测器的联合运行,探测灵敏度逐步提升,引力波发现

的数量快速增长。截至2025年7月,已累计公布超过300个致密双星并合事件,其中绝大多数为双黑洞系统,少数为双中子星或黑洞-中子星系统[10]。目前为止,GW170817仍然是唯一一个同时具有完整电磁对应体的典型多信使天文事件。通过引力波的观测,测量中子星的潮汐形变约束了中子星状态方程,并精确测定了质量比、轨道参数及总质量,为中子星质量上限与双中子星系统形成渠道提供

第37卷(2025年) | 第4期

了关键信息^[6]。此外,理论预言中子星并合后形成的吸积盘可能通过中微子辐射冷却,但GW170817事件未探测到中微子辐射,可能的原因在于GRB170817A的喷流与视线方向有较大偏离^[11]。双中子星并合事件可能同时辐射引力波、电磁波和中微子,未来如果能够联合三个信使的观测,将进一步推进对致密天体并合与演化过程的研究。

与双中子星并合类似,黑洞-中子星并合事件 也是引力波多信使天文学的重要研究对象。由于 黑洞与中子星质量和结构的差异,其并合过程相比 双中子星系统更为复杂,产生引力波的波形也具有 独特特征。LIGO-Virgo合作组织已在第三次观测 运行中报告了多个黑洞-中子星并合事件,包括 GW200105和GW200115[12]。理论研究指出,黑洞-中子星并合是否产生可观测的电磁辐射,取决于黑 洞的质量与自旋、中子星状态方程等参数。当黑洞 与中子星质量比相对较小且黑洞自旋较快时,更易 于撕裂中子星并形成抛射物和吸积盘,从而可能触 发短伽马射线暴和千新星等多波段辐射四。当前 引力波多信使事件稀缺的主要原因有:其一,引力 波探测器的天区定位误差通常在数十至数百平方 度(受限于探测器网络布局及信噪比),快速锁定电 磁对应体的难度较大;其二,受限于现有探测器灵 敏度,可探测到的双中子星并合和黑洞-中子星并 合事件率较低。

恒星级黑洞并合曾被认为与电磁波或中微子观测无关,因为双黑洞系统中通常缺乏足够的物质。但是,如果双黑洞在活动星系核(AGN)致密气体盘中并合,可能激发电磁波和高能中微子辐射,并有望与引力波信号一起被探测到[14,15]。例如,针对双黑洞并合事件 GW190521,有团队指出暂现源 ZTF19 abanrhr可能与其关联,属于并合后的黑洞在穿越AGN吸积盘过程中产生电磁波耀发[16]。虽然类似的关联事件还有不少,也有其他理论预测恒星级双黑洞并合产生多信使信号,但是目前还未发现确切的双黑洞并合事件的电磁对应体,能够产生多信使信号的双黑洞事件的并合率也存在较大的不确定度。

双中子星并合事件 GW170817 作为首个引力 波与电磁波全波段信号联合探测的案例,其波形特 征独立还原了并合过程的物理机制,突破了传统电 磁手段对强引力场和致密物质的研究限制,为探索 宇宙演化提供了全新维度。未来,下一代地基探测 器(如 Cosmic Explorer^[17]和 Einstein Telescope^[18])凭 借其更高的灵敏度、更宽的频率范围与更高定位精 度,将极大提高双中子星和黑洞-中子星,甚至是双 黑洞并合多信使事件的探测事件率,并有望揭开致 密天体性质、及其形成和演化研究的新篇章。

2. 太阳: 多信使观测的早期实践

多信使观测最早可追溯到20世纪40年代对太 阳耀发事件的宇宙线观测。宇宙线的研究起源于 20世纪初,当时科学家注意到电离辐射在没有已知 地面放射源的情况下仍然存在。1912年,奥地利物 理学家维克托·赫斯进行了著名的高空气球实验,发 现随着高度的上升,大气中的电离程度不仅没有减 弱,反而增强,这一结果排除了地球起源的可能性, 首次明确指出这种高能辐射来自宇宙吗。赫斯的发 现为宇宙线(Cosmic Rays)研究奠定基础,并在1936 年获得诺贝尔物理学奖。宇宙线也成为了研究高能 天体过程、星际介质和基本粒子物理的重要窗口。 1946年美国天文学家斯科特·福尔布什分析了三次 宇宙线事件,并提出这些现象可能源自太阳发射的 高能带电粒子,是太阳宇宙线观测的开端[19],也暗 示了宇宙中的高能过程可能通过多种物理载体传 播信息。

太阳核心发生的氢核聚变反应中产生的中微子,是我们研究恒星内部结构与演化机制的直接信使。与传统的电磁观测不同,中微子几乎不与物质相互作用,因此可以在毫无阻挡的情况下穿透太阳内部直达地球。1968年,美国天体物理学家雷蒙德·戴维斯在南达科他州一个地下1500米的废弃金矿中建立了首个大型太阳中微子探测实验,成功探测到来自太阳的中微子,首次直接证实了太阳能量来源于氢核聚变反应^[20]。这一成果不仅奠定了中

微子天文学的基础,也为恒星内部的理论模型提供 了实验证据。

然而,戴维斯在随后的实验中发现,实际探测到的太阳中微子通量仅为理论预测值的约三分之一,"太阳中微子失踪之谜"在天体物理界引发了长达数十年的讨论。这一差异最初被怀疑是太阳模型的误差,但后续的太阳演化模型和日震观测结果均支持标准太阳模型的准确性。谜题的突破来自对中微子本身性质的深入研究。1998年,基于日本超级神冈探测器的实验结果,科学家发现中微子在传播过程中会发生转变,即"中微子振荡"现象。这一发现表明中微子具有非零静止质量,从而导致部分电子中微子在传播过程中转变为其他类型而未被原有探测器识别[21,22]。这一机制完美解释了中微子数量的缺失,也标志着天文学与粒子物理的深度交汇融合,为今后的太阳、中子星以及超新星内部研究开辟了全新的观测途径。

3. 超新星爆发: 电磁波、中微子和引力波辐射

超新星爆发,尤其是大质量的恒星发生核心坍 缩形成中子星或黑洞的核心坍缩型超新星,是宇宙 中最剧烈的爆炸性事件之一,其过程伴随巨大的能 量释放和复杂的物理过程。核心坍缩型超新星发 生在质量超过约8倍太阳质量的恒星演化末期,在 这个阶段,恒星通过连续核聚变形成越来越重的元 素,最终形成由铁元素构成的核心[23]。随着铁核质量 逐渐增大并超过钱德拉塞卡质量极限,电子简并压 力无法抵挡引力,铁核在极短时间内迅速坍缩,密 度达到核物质饱和密度。坍缩过程中,电子与质子 结合产生中子并释放中微子,核心以近自由落体速 率坍缩,尺寸骤然缩小数百倍。当核心密度接近核 饱和密度时,核力突然增强使坍缩核心反弹,在界 面处产生强烈的冲击波即反弹激波并向外传播[24]。 此时,核心瞬间释放出高强度的电子中微子爆发, 部分能量被中微子带走,冲击波强度迅速下降。冲 击波向外传递过程中,高温下外层物质被分解为质 子和中子,这个过程吸收了冲击波大量能量。同 时,中微子爆发进一步消耗了冲击波能量。结果冲 击波动能迅速耗尽,形成停滞态,无法立即引发爆 炸。坍缩后形成的原中子星温度极高,通过向外辐

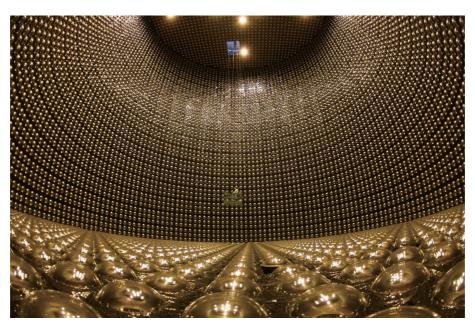


图 3 超级神冈中微子探测器内部图。来源: Kamioka Observatory, ICRR (Institute for Cosmic Ray Research), The University of Tokyo

射中微子将能量传递给停滞区外的物质。原中子星发出的中微子逐渐加热冲击波外侧的吸积物质,为其提供额外能量,最终使冲击波重新获得足够动能并触发超新星爆炸^[25,26]。这一过程需要数百毫秒,中微子机制成为目前最被广泛认可的爆发动力源。以上各阶段,只要存在非球对称运动就会产生引力波。如坍缩前铁核的旋转或其他非轴对称不稳定性、反弹及后续震荡过程中的非球对称质点运动,以及原中子星形成后各种振荡模态等,都会辐射引力波^[27]。这些引力波携带了核心深部动力学信息,与电磁波和中微子观测互补,为研究超新星内部过程提供了重要信号。

大量三维核心塌缩超新星模拟表明,超新星爆炸辐射引力波信号主要集中在几百赫兹到几千赫兹波段,针对银河系内事件,距离以10 kpc 为基准,与 SN1987A 类似事件的峰值应变大致在10⁻²² Hz^{-1/2}。将距离尺度调整至 SN1987A 所在的大麦哲伦云,应变幅度会进一步衰减,估算峰值应变大约为10⁻²³ Hz^{-1/2}[28]。而 Advanced LIGO 在对应频段的应变灵敏度大约为10⁻²³ Hz^{-1/2},尽管理论上如果复现类似 SN1987A 爆发产生的引力波强度,可能刚好接近或略高于 LIGO 的灵敏极限。然而,模型之间差异巨大,且实际信号具有极高随机性与方向依赖性,结合 LIGO 探测阈值,实际能够稳妥探测到类

似 SN1987A 级事件的概率依旧较低。因此,超新星爆发的引力波探测可能需要寄希望于未来第三代地基探测器,而对这类事件进行电磁波、引力波和中微子的协同观测,将帮助我们全面理解核心坍缩型超新星爆发的整个过程。

4. 活动星系核和潮汐瓦解事件的 多信使观测

在GW170817中子星并合引力波多信使观测的同一年,科学家通过冰立方(IceCube)中微子天文台探测到一个高能中微子事件,并成功将其源头定位于耀变体 TXS 0506+056^[29]。这是首次在耀变体观测中实现中微子与电磁波的空间关联,证明活跃的类星体喷流可以成为高能中微子的来源。这一事件代表着对持续性高能源的多信使观测开启了新阶段,进一步推动了探索中微子和宇宙线起源的研究。2019年,潮汐撕裂事件成为多信使天文学研究的又一热门方向。潮汐瓦解事件AT2019dsg与高能中微子事件IC191001A的显著关联,成为首例光学与中微子观测成协的潮汐瓦解事件,为宇宙高能中微子的起源提供了突破性证据。后续潮汐瓦解事件AT2019fdr与其中微子信号的多信使联合观测也进一步验证了高能中微子可能来源于潮汐瓦

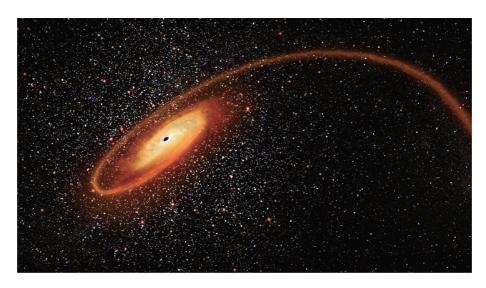


图 4 潮汐瓦解事件示意图,其中黑洞撕裂了一颗经过的恒星。图源: NASA, ESA, and D. Player (STScI)

解事件[30]。

5. 展望

自GW170817开启引力波与电磁波联合探测的新纪元以来,多信使观测已被证实是研究中子星并合、超新星爆发、宇宙膨胀等现象的重要手段。要实现更广泛、更深入的多信使观测,首先需依赖下一代高灵敏度探测器的建设与部署。在引力波方面,Cosmic Explorer和 Einstein Telescope 等第三代地基引力波探测器将极大扩展探测极限,提升事件定位精度,使得引力波信号的预警更准、更早,从而为电磁波和中微子探测提供充分响应时间。与此同时,电磁波和中微子探测提供充分响应时间。与此同时,电磁波段观测设备也在快速发展,大视场光学巡天望远镜下一代射电望远镜和伽马射线探测器将成为引力波事件后随观测和伽马射线暴识别的主力工具。配合快速响应机制,这些望远镜将能及时捕捉千新星、射电脉冲和余辉等信号,进一步丰富多信使数据样本。

在中微子观测方面,尽管GW170817未能实现 中微子探测,但理论模型表明中子星合并过程的中 微子在能量转移和核合成中扮演关键角色。下一 代中微子探测器将提升对核心坍缩超新星和致密 星双星并合事件中微子信号的探测能力。此外,高 能中微子天文台也将在伽马射线暴等高能瞬变事 件的研究中发挥重要作用。总之,要实现真正高效 的多信使观测,仅靠单一探测器远远不够,更需建 立多设备、跨时域的协同网络。这包括引力波探测 器、中微子早期预警系统、电磁波段快速响应网络, 以及全球数据共享和联合的数据分析平台。未来 的多信使观测将日益依赖人工智能驱动的实时数 据处理和自动识别系统,以应对海量数据流和事件 筛选的挑战。此外,理论建模与数值模拟也需紧密 配合实时观测,从而优化观测策略、定位信号来源、 提高事件识别的准确性。未来若足够幸运,当类似 宋朝天关客星的超新星事件再次闪耀于当代的星 空,有望同时观测到电磁波、引力波和中微子,甚至 直接捕捉到宇宙线。

参考文献

- Jansky, K. G. (1933). Proceedings of the Institute of Radio Engineers, 21(10), 1387-1398.
- [2] Cowan, C. L., Reines, F., Harrison, F. B., Kruse, H. W., & McGuire, A. D. (1956). Science, 124(3212), 103-104.
- [3] Hirata, K. et al. (1987). Physical Review Letters, 58, 1490-1493.
- [4] Hess, V. F. (1912). Physikalische Zeitschrift, 13, 1084-1091.
- [5] Abbott, B. P., Abbott, R., Abbott, T. D., et al. (2016). Physical Review Letters, 116(6), 061102.
- [6] Abbott, B. P., Abbott, R., Abbott, T. D., et al. (2017). Physical Review Letters, 119(16), 161101.
- [7] Abbott, B. P., Abbott, R., Abbott, T. D., et al. (2017). The Astrophysical Journal Letters, 848(2), L12-L16.
- [8] Kasen, D., Metzger, B., Barnes, J., Quataert, E., & Ramirez-Ruiz, E. (2017). Nature, 551(7678), 80-84.
- [9] Lazzati, D., Perna, R., Morsony, B. J., et al. (2018). Physical Review Letters, 120(24), 241103.
- [10] LIGO Laboratory. (2025). https://www.ligo.caltech.edu/news/ ligo20250320
- [11] Kimura, S. S., Murase, K., Mészáros, P. (2017). The Astrophysical Journal, 848(1), L4.
- [12] Abbott, R., Abbott, T. D., Abraham, S., et al. (2021). The Astrophysical Journal Letters, 915(1), L5.
- [13] Foucart, F., et al., (2013). Phys. Rev. D 87, 084006.
- [14] Yi, S.-X., & Cheng, K. S. (2019). Astrophysical Journal Letters, 884, L12.
- [15] Zhu, J-P. (2023). Mon. Not. Roy. Astron. Soc. 528 (2023) 1, L88-L95.
- [16] Graham, M. J., Ford, K. E. S., McKernan, B., et al. (2020). Phys. Rev. Lett., 124, 251102.
- [17] Evans, M., Hall, E. D., Vitale, S., et al. (2023). arXiv:2307.08796.
- [18] Branchesi, M., Maggiore, M., Alonso, et al. (2023). Journal of Cosmology and Astroparticle Physics, 2023(07), Article 068.
- [19] Forbush, S. E. (1946). Physical Review, 70(9-10), 771-772.
- [20] R. Davis, D. S. Harmer, and K. C. Hoffman, (1968). Phys. Rev. Lett., vol. 20, no. 21, pp. 1205-1209.
- [21] Y. Fukuda et al. (Super-Kamiokande Collaboration), (1998). Phys. Rev. Lett., vol. 81, pp. 1562-1567.
- [22] Bahcall, J. N., (2000). Phys. Rep., vol. 333-334, pp. 47-54.
- [23] H.-T. Janka, K. Langanke, A. Marek, et al. (2007). Phys. Rept. 442, 38-74.
- [24] A. Burrows, D. Vartanyan, J. C. Dolence, et al. (2018). Space Sci. Rev. 214, 33.
- [25] H. A. Bethe and J. R. Wilson, (1985). Astrophys. J. 295, 14-23.
- [26] Janka, H.-T., Langanke, K., Marek, A., et al. (2007). Physics Reports, 442(1-6), 38-74.
- [27] C. D. Ott, (2009). Class. Quantum Grav. 26, 063001.
- [28] D. Radice, V. Morozova, A. Burrows, et al. (2019). Astrophys. J. Lett. 876, L9.