子午工程二期北方中纬高频雷达网

张佼佼 蓝爱兰 邓 翔 王 玮 李 航 孙凌晨 阎敬业

(中国科学院国家空间科学中心 100190)

1. 引言

在地球表面以上 60 到 1000 千米的区域, 一部 分大气会受太阳和宇宙射线的辐射而被电离, 这个 区域被称为电离层。电离层是大气层中所有带电 粒子的家园, 然而, 这些带电粒子的分布并不均 匀。电离层中存在各种尺度的密度不均匀体, 这些 不均匀体会对依靠或经过电离层传播电磁波的无 线电通讯、超视距雷达探测、全球导航定位系统等 产生干扰。

我国北方至俄罗斯北部地区是受来自北极地 区恶劣空间天气影响最为明显和直接的区域,也是 电离层高中低纬耦合与扰动传播的重要场所。尤 其是在扰动空间天气条件下,北极电离层众多不均 匀体可直接传输到该区域,直接影响该区域的电离 层状态。同时,该区域也是极区空间天气扰动沿子 午线传播到我国中低纬地区的必由之路。对该地 区的大范围、全程监测不仅对电离层南北耦合等重 大科学问题非常重要,同时也为我国的电离层扰动 预报预警提供支撑,所以这一区域是子午工程二期 重点监测区域之一。为此,子午工程二期在我国北 部吉林龙井市、内蒙古四子王旗、新疆和静县部署 三个高频雷达站,每站两部高频雷达,形成我国北 方中纬高频雷达网,对亚洲中高纬度电离层不均匀 体开展广域全天候监测。

2. 高频雷达基本探测原理与构成

高频雷达的工作频率在10兆赫兹左右(波长约 30米),属于短波波段,与我们经常收听的广播属于 同一波段。这个频率的电磁波会在电离层中发生 折射,从而在电离层中实现长距离传播。当高频电 磁波在雷达波束与磁力线近乎垂直处遇到电离层 不均匀体分布,且尺度与电磁波波长相当时,就会 发生布拉格散射。这种情况下,入射波长和散射波 长相同,他们发生电磁波的干涉,所以这种雷达又 被称为高频相干散射雷达,如图1所示。雷达探测 期间,不均匀体运动会使回波发生多普勒频移,利 用这个特点可获得电离层不均匀体的多普勒速度 信息。电离层F层的等离子体不均匀体就像整个电 离层等离子体运动的示踪剂,它们随着电离层等离 子体运动而运动,所以高频雷达探测的等离子体不 均匀体的运动常被用来表征电离层等离子体的整 体运动特征。

用于电离层探测的高频雷达通常采用相控阵体制,其工作原理是通过改变阵列中各天线单元的信号相位关系,实现阵列方向图的波束指向变化。 一部雷达大多采用双天线阵列:收发主阵和干涉子阵。收发主阵具备发射大功率信号和接收回波的能力,并实现方位向扫描观测;干涉子阵不具备发射功能,用于接收主阵发射的信号经不均匀体散射后的回波,并通过与主阵接收到的回波进行相干处

理,获得回波的仰角信息。图2展示了子午工程二 期北方中纬高频雷达网在每个台站部署两部雷达 (东向雷达和西向雷达)的天线主阵、子阵和雷达控 制室的位置。每部雷达的主阵均由16个天线单元 构成,子阵由4个天线单元构成,天线单元采用双折 合振子天线,并设计反射网以提升阵列增益;雷达 电子设备(包括收发单元、数字信号处理单元、数据 处理及传输单元等)均部署在雷达控制室内,控制 室内配置UPS及温度调节系统等辅助设备,为电子 设备正常工作提供保障。每部雷达的视场范围为 78°,通过阵列设计,同一台站的两部雷达分别用于 对东部天空和西部天空进行观测,实现156°的大视 场覆盖。

3. 国际高频雷达网发展历程

20世纪七八十年代,美国科学家在高纬度地区 利用甚高频(VHF)相干散射雷达测量电离层不均匀 体散射的一系列试验中发现:电离层回波具有多普 勒频移特征,证明等离子体存在垂直于磁力线方向 的运动。但甚高频电波在电离层中沿直线传播,以 及不均匀体的探测要求电磁波传播方向垂直于磁 力线限制了甚高频雷达在更高纬度地区的应用,因 为在更高纬度的极区磁力线近乎垂直于地面。利

用高频(HF)电磁波可以被电离层折射的特性,可在 高纬度地区实现电磁波与地球磁力线正交的条件, 从而探测到这些区域的电离层不均匀体运动。 1983年10月,美国约翰霍普金斯大学的格林沃尔 德教授领导的团队在加拿大鹅湾(Goose Bay, 53.32°N, -60.46°E)建成了世界上首部高频相干散 射雷达^[1]。该雷达天线由16个对数周期天线组成, 工作频率范围为8~20兆赫兹。雷达具有16个扫描 波位,波束宽度3.25°,所以扫描范围为52°,探测距 离为从约200千米到3000千米以上。距离分辨率 由发射脉冲宽度决定,普通模式下脉冲宽度为300 微秒,对应距离分辨率为45千米。全视场扫描时间 分辨率在普通模式下是1到2分钟。1987年,该雷 达又增加了一副额外的4单元子阵列,利用干涉测 量技术获取回波的仰角信息。罗霍涅米证实了该 雷达探测的电离层F层不均匀体运动速度即为电离 层等离子体E×B对流漂移速度^[2]。随后,另一台几 乎相同的雷达在南极洲哈雷(Halley)建造完成,它 具有与鹅湾雷达地磁共轭的视场。哈雷雷达于 1988年1月开始运行,联合项目被命名为极地英美 共轭实验(Polar Anglo-American Conjugate Experiment (PACE)), 两部雷达可同时提供电离层和磁层 现象的共轭观测。PACE在磁层极尖区太阳风-磁

(带箭头虚线表示阵列法向,带箭头实线指向北)

层-电离层相互作用,以及电离层等离子体对流南 北半球不对称性研究中非常成功。

但人们很快意识到PACE的局限性,那就是每 部雷达只能获取不均匀体视线方向的速度信息,要 确定完整的二维速度矢量,需要从至少两个不同视 角方向对不均匀体速度进行测量。加拿大魁北克 省谢弗维尔的另一个高频雷达于1989年10月投入 使用,并与鹅湾雷达联合探测证实了高频雷达双向 共同观测的可行性。这一工作促进了国际超级双极 光雷达网(Super Dual Auroral Radar Network, Super-DARN)的诞生。SupDARN雷达网是一个高频雷达 国家合作组织,通过国际数据共享,综合分析部署 在中高纬度地区的高频雷达集群获取的不均匀体 多普勒速度信息,可实现每1~2分钟即生成一幅全 球尺度的电离层等离子体对流图,在研究电离层对 流动力学方面相对于卫星观测和地面地磁台站反 演技术等具有无与伦比的优势。

早期,SuperDARN 雷达只在高纬度和极区部 署,因为那里是受太阳风暴影响最强的区域。但在 剧烈的太阳风暴侵袭下,极光带会向更低的纬度地 区扩张,甚至超出SuperDARN 雷达网的视野范围, 同时增强的极盖区沉降和极光导致了非常严重的 电离层D区对雷达信号的吸收,使SuperDARN雷达网不能对强磁暴期间的等离子体对流进行完整的观测。为了克服这些限制,中纬度高频雷达开始发展⁽³⁾。2005年,第一台中纬度SuperDARN雷达在美国弗吉尼亚州的沃洛普斯(Wallops)建设完成。贝克等人利用沃洛普斯雷达的观测研究表明,在国际三小时磁情指数Kp>3时,中纬度雷达可以测到极光电场向中纬度的扩张,而且加入了沃洛普斯雷达的观测使得整个SuperDARN雷达网求得的越极电位降增加了25%。这充分说明了中纬度雷达的重要性。从2005年至2014年间,美国和日本相继共建设了10部中纬度高频雷达。我国也于2018年在黑龙江佳木斯市郊建设了一部中纬高频雷达,该雷达由中国科学院国家空间科学中心设计并建设,

至2022年,SuperDARN共包含37部雷达,其中 北半球24部,南半球13部。图3展示了SuperDARN 雷达在南北半球的分布及各雷达视场,坐标为地磁 坐标。SuperDARN组织成员目前包括来自美国、加 拿大、日本、中国、挪威、英国、澳大利亚、法国、意大 利、南非10个国家的16家科研单位。通过合作协 议,各成员单位共享软件和数据资源,每部雷达每

图3 SuperDARN 雷达在南北半球的分部及雷达视场(地磁坐标)

年需要保证有至少50%的时间执行SuperDARN组织的制造运行模式。SuperDARN组织的制造运行模式。SuperDARN组织的执行委员会管理,执行委员会由雷达的首席科学家组成,执行委员会设主席一名,副主席两名。为保障雷达运行、数据收集、分析、发布工作,Super-DARN组织还设有6个工作组,它们分别为数据分析工作组,数据发布工作组,数据标准工作组,数据可视化工作组,雷达调度工作组和航天器工作组。SuperDARN组织目前共拥有3个数据中心,分别的英国南极调查局,加拿大萨斯克彻温大学和中国科学院国家空间科学中心管理运行。三个数据中心分别收集各自片区的雷达数据,同时通过数据同步技术进行数据库间的数据实时同步。

4.子午工程二期北方中纬高频雷达网

在子午工程一期项目的支持下,中国极地研究 中心于2012年4月在南极中山站建成了我国第一 部高频相干散射雷达并加入SuperDARN组织,在 图3的南半球雷达视场图中可以找到中山站高频雷 达(ZHO)视场范围。该雷达天线阵列由我国自主施 工建设,雷达发射机和接收机等电子学部件则自英 国莱斯特大学引进。

为了突破高频相干散射雷达关键技术,中国科 学院国家空间科学中心在国家科技计划项目的支 持下于2018年成功研制出我国首部具有自主知识 产权的高频相干散射雷达原理样机,雷达部署于黑 龙江省佳木斯市郊(46.8°N,130.5°E),也是我国首部 中纬度高频雷达,雷达代码JME。得益于电子信息 技术的快速发展,佳木斯雷达摒弃了传统 Super-DARN雷达利用移相网络来进行相位控制的方法, 采用全数字相位控制和合成技术,减少模拟器件的 使用,不仅减少了延迟线缆损耗和线缆不一致性等 影响,还节约了波束方向改变时延迟线长度调整的 时间,极大地降低了系统误差,提高了系统性能。 从图3北半球的雷达视场图可以看出,佳木斯雷达 (JME)与SuperDARN日本北海道两部雷达(北海道 雷达HOK,北海道西雷达HKW)具有重合的观测区 域,可获取该区域的电离层不均匀体二维速度信 息。虽为原理样机,但该雷达自建设完成开机运行 以来,一直正常工作至今,生成的数据于2019年通 过SuperDARN数据发布工作组的验证汇入Super-DARN数据库,于2020年正式加入SuperDARN组 织。该雷达在研究我国北方中高纬度地区电离层 不均匀体特征及演化规律,强磁暴期间电离层对 流,强烈火山爆发对电离层的影响等方面发挥了重 要的作用^[46]。佳木斯雷达的成功研制为子午工程 二期北方中纬高频雷达网的建设奠定了坚实的技 术基础。

从图3的雷达分布图可以看出,相比于欧美扇 区,亚洲扇区中高纬地区存在大量的探测空白区。 在我国的北方地区布设高频雷达网正好可以弥补 这个区域的探测空白,为深入研究电离层扰动从极 区向我国区域传播的特征,强磁暴期间电离层不均 匀体产生机制和演化过程等关键科学问题提供宝 贵的研究数据。以"一链三网四聚焦"为整体建设 思路,子午工程二期于2019年底立项。一链指太阳 一行星际监测链,三网包括地磁监测网、电离层监 测网和中高层大气监测网,四聚焦指在极区高纬、 北方中纬、海南低纬和青藏高原共4个区域进行重点 观测。北方中纬地区部署的主要探测设备即为北方 中纬高频雷达网,它由三站六部高频雷达组成。三 个台站分别位于吉林龙井市(42.8°N,129.4°E),内蒙 古四子王旗(41.8°N,111.9°E)和新疆和静县(42.6°N, 83.7°E)。该雷达网的雷达系统在佳木斯雷达系统 的基础上做了大量的系统优化设计,如采用内外定 标相结合技术提高目标位置精度,采用多基线仰角 测量技术提高目标仰角信息测量精度,雷达控制软 件也做了优化以提升雷达参数调节灵活度等。该 雷达网设计的探测范围南北纵深为3500 km、东西 跨度7000~8000 km,覆盖欧亚扇区北部地磁北纬 40°~80°的广大区域。北方中纬高频雷达网探测范 围如图4所示。

图4 北方中纬高频雷达网三站六部雷达探测范围示意图(图片引用自文献:张佼佼,蓝爱兰.(2023). 基于高频相干散射雷达网的中纬度电离层动力学过程研究,中国基础科学(3),36-43.)

项目建设周期4年,立项以来,团队不但要攻克 技术难关还要克服野外台站恶劣环境以及疫情的 影响。内蒙古四子王站两部雷达率先建设完成,并 于2022年9月迎来首光(First Light)数据。台站两部 雷达天线阵布局如图5所示,每部雷达的天线主阵 由16个双折合振子天线组成,阵列总长为204.8米, 干涉子阵由四个天线单元组成,阵列总长为51.2 米,主阵和子阵间距离为100米。雷达控制室位于 主阵和子阵之间。图6展示了四子王西向雷达天线 主阵,六边形的双折合振子天线,以及反射网照片。 吉林龙井站两部雷达于2023年6月底建设完成并 开机测试,新疆和静站两部雷达于2023年9月建设 完成(图7)。三站六部雷达于2023年10月17日完成 工艺测试,测试结果表明北方中纬高频雷达网(三 站六部雷达)探测范围往北超过4000千米,东西跨 度超过10000千米,优于项目可行性研究报告批复 的要求,各项技术指标达到或优于初步设计要求。

北方中纬高频雷达网的建设实施使亚洲中高 纬度地区具备了开展大范围电离层环境探测的条 件,它可监测来自北极的电离层扰动向我国上空的

图5 子午二期北方中纬高频雷达网每个雷达站两部雷达天线布局图

图6 雷达天线主阵(A),双折合振子天线(B),反射网(C)

图7 新疆和静站照片(雷达控制室正在进场)

传播过程;它是衔接极区和我国国内监测网的桥梁,对电离层区域特性研究及电离层扰动的高、中、低纬度传播及耦合研究起到重要作用,为我国空间天气预警、预报提供数据支撑。在国际上,它填补了SuperDARN雷达网在亚洲扇区中高纬度地区的探测空白,加入SuperDARN组织后,将极大地扩大SuperDARN中纬度雷达网的探测范围,监测强磁暴期间电离层不均匀体的演化过程,获得完整的电离层等离子体对流图,并将为亚极光区极化流、磁层低频波的全球演化特征研究提供大量的观测资

料。图8展示了加入(a)和未加入(b)北方中纬高频 雷达网六部雷达:龙井东(LJE)、龙井西(LJW)、四子 王东(SZE)、四子王西(SZW),和静东(HJE),和静西 (HJW)的数据,SuperDARN雷达网在2023年12月1 日磁暴事件世界时13时47分获得的北半球电离层 对流图的对比图。图8(a)标出了六部雷达的视场, 从图8(b)可以看出当北方中纬高频雷达网加入之 前,亚洲中高纬度地区缺乏有效的电离层对流观测, 这块区域的对流数据是由一个统计模型来填充的, 模型显示该区域电离层等离子体对流较弱。图8(a)

图8 加入(a)和未加入(b)北方中纬高频雷达网六部雷达:龙井东(LJE),龙井西(LJW),四子王东(SZE),四子王西(SZW),和静东 (HJE),和静西(HJW),SuperDARN 雷达网在 2023 年 12 月 1 日磁暴事件世界时 13 时 47 分获得的北半球电离层对流图的对比

显示子午工程北方中纬高频雷达网在很大范围上 提供了亚洲扇区等离子体对流观测数据,显示实际 情况下该区域具有较强的电离层对流,对比(a)(b)两 图发现有观测数据支撑的对流涡与统计模型得出 的对流涡有很大差别。子午二期北方中纬高频雷 达网极大地提高了这个区域等离子体对流的精度, 从而使整体北半球电离层对流图的精度得到提升。

5. 总结和展望

北方中纬高频雷达网作为子午工程二期重点 监测设备之一,建设团队克服了重重困难,高质量 按进度完成了设备的建设、调试和验收,为实现科 学目标奠定了坚实的基础。在国际合作方面,子午 二期北方中纬高频雷达网的六部雷达数据也将汇 入国际 SuperDARN数据库,为全球电离层对流研 究做出中国贡献。我们还在 SuperDARN数据中心 建设方面发挥积极作用,中国科学院国家空间科学 中心已于 2022 年建立了 SuperDARN 中国数据中 心,该中心为 SuperDARN 三个数据中心之一,有效 提升了 SuperDARN数据的收集和发布效率,以及 数据库可靠性和容灾性。此外,我们于 2024年5月 在北京组织召开了国际超级双极光雷达网(SuperDARN)2024年研讨会,研讨会汇集世界各地的高频 雷达工程师、科学家和合作者,交流高频雷达网的 现状、新项目和新技术、最新科学成果,并讨论SuperDARN的运作、国际合作和未来发展方向等。可 以期待,子午工程北方中纬高频雷达网必将在国内 和国际电离层研究中做出重要贡献。

参考文献

- Greenwald, R.A., et al., An HF phased-array radar for studying small-scale structure in the high-latitude ionosphere. Radio Science, 1985. 20(1): p. 63-79.
- [2] Ruohoniemi, J.M., et al., Drift motions of small-scale irregularities in the high-latitude F region: An experimental comparison with plasma drift motions. Journal of Geophysical Research: Space Physics, 1987. 92(A5): p. 4553-4564.
- [3] Baker, J., et al., Observations of ionospheric convection from the Wallops SuperDARN radar at middle latitudes. Journal of Geophysical Research: Space Physics (1978-2012), 2007. 112(A1).
- [4] Zhang, J.J., et al., First Observation of Ionospheric Convection From the Jiamusi HF Radar During a Strong Geomagnetic Storm. Earth and Space Science, 2020. 7(1): p. e2019EA000911.
- [5] Wang, W., et al., Statistical Characteristics of Mid-Latitude Ionospheric F-Region Backscatter Observed by the SuperDARN Jiamusi Radar. Radio Science, 2023. 58(7): p. e2022RS007634.
- [6] Zhang, J., et al., Oscillations of the Ionosphere Caused by the 2022 Tonga Volcanic Eruption Observed With SuperDARN Radars. Geophysical Research Letters, 2022. 49(20): p. e2022GL100555.