# 中子星相关的暂现事件

王维扬

(北京大学 100871)

### 1. 致密星的摇篮: 超新星

古人把夜空中忽然出现的"不速之客"称为客 星,由于无法对距离进行精确地测量,古人记载的 客星实际包括现代天文学所谓的彗星、新星、超新 星等现象。区别于普通的新星,超新星具有更亮的 光度,其瞬时光度可达太阳的几百亿甚至千亿倍。 人类历史最早记录在册的超新星事件可追溯到185 年<sup>0</sup>,《后汉书·天文志》载:"中平二年十月癸亥,客 星出南门中,大如半筵,五色喜怒,稍小,至后年六 月消",明亮的超新星可在几周或是几个月内才慢 慢淡出人们的视线。

中国古代在记录和观测超新星爆发方面有着 诸多辉煌的成就,最为著名的,当属公元1054年的 客星出世,这次举世闻名的事件在《宋会要》《续资 治通鉴长篇》等文献中均有记载,这次超新星爆发 形成了美丽的蟹状星云(参见本期卢吉光的文章 《射电脉冲星》图1)。值得注意的是,位于蟹状星云 的核心区域,科学家发现了一颗自转周期约33毫秒 的脉冲星<sup>®</sup>。通过自转能损率的估计,可推知这颗 脉冲星诞生于1000年前左右,表明它是宋代超新星 爆发遗留的产物。由此可见,超新星事件是致密星 诞生的摇篮。

1987年2月23日,科学家在大麦哲伦星云中发现了一颗超新星,它被命名为SN1987A超新星\*(见图1),这是自1604年以来第一颗用肉眼就能看到的超新星。日本的神冈与美国的IMB分别探测到这次超新星事件所产生的中微子暴<sup>334</sup>,通过中微子暴的能量分析,科学家推断SN1987A的核心区理论上形成了一颗中子星<sup>56</sup>。这可能是人类历史上首次

观测到中子星的诞生,并跟踪其几十年内超新星遗迹的演化。然而,天文学家几十年来不断努力探索,却并未在遗迹中发现脉冲星的辐射信号, SN1987A的遗迹核究竟是什么,成为了留给科学家的一道谜题。

根据光谱特征,超新星大体可分为I型和II型。 I型超新星的光谱中没有宇宙中最丰富的氢的谱 线,而II型超新星的谱线则主要是氢的谱线。I型超 新星爆发又可以细分,其中一部分光谱以电离Si的 615 nm吸收线为主,被称为Ia型;而对于没有这一 条吸收线但有氦特征的,称为Ib型,至于没有氦特 征的,称为Ic型。一般认为,Ia型超新星是由吸积白 矮星热核爆炸产生,它们的亮度较高且均匀,可作 为"标准烛光"<sup>①</sup>用来测量宇宙学距离。而Ib/c及II 型超新星则被认为是核心坍缩产生,它们的前身星 一般是大于8倍太阳质量的恒星。当恒星演化到



图1 SN1987A 遗迹的图像(Credit: Radio: ALMA (ESO/NAOJ/ NRAO), P. Cigan and R. Indebetouw; NRAO/AUI/NSF, B. Saxton; Xray: NASA/CXC/SAO/PSU/K. Frank et al.; Optical: NASA/STScI)

Fe核阶段,Fe是最强的束缚核,核心内不再有任何 热核反应,星核将坍缩,电子被质子俘获导致星核 的迅速中子化。超新星爆发是恒星的彻底瓦解,它 将恒星燃烧的物质抛向星际空间,形成美丽的超新 星遗迹,并在核心区域留下一个致密的"果核"。根 据前身星质量,这个包裹在遗迹之中的"果核"可能 是物质坍缩的中子星,也可能是黑洞(通常是更大 质量的前身星),超新星最为神秘之处莫过于此,致 密核心的探究能够帮助科学家更好地理解前身恒 星的一生以及致密天体的形成。

## 2. GRB与FRB

与超新星不同,伽马射线暴(Gamma-Ray Burst,简称GRB)与快速射电暴(Fast Radio Burst,简 称FRB)的主要辐射并不集中在人类肉眼可见的光 学波段,因此它们直到20世纪后半叶甚至21世纪 才偶然被人们发现,并逐渐进入人们的视野。

#### 2.1 宇宙大爆炸之后最剧烈的暴发:GRB

地球大气层过滤了大量来自星际空间的高能 光子,保护我们不受宇宙伽马射线的照射,但也屏 蔽了地面观测星际伽马射线的直接通道(参见本期 葛明玉的文章《高能脉冲星》),因此我们需要借助 空间望远镜实现星际伽马射线信号的探测。20世 纪60年代,美国发射的系列军用Vela卫星发现了来 自宇宙空间的伽马射线信号,随后的几年陆续发现 更多这样的信号<sup>®</sup>,经过严谨地排查,它们并非来自 地球或是太阳,均来自宇宙空间。这些来自宇宙空 间的伽马射线信号称为GRB,它们普遍具有随时间 变化极快,持续时间仅几秒之短,能量极高的特征。 这个意外的发现,拉开了GRB天文时代的序幕。

我们知道银河系是一个盘状旋涡星系。晴朗的夜空之下,银河系宛如一条横跨夜空的白色腰带。由此可见,如果GRB来自银河系内部,它们应该散落地分布在这条"腰带"之上。1991年,随着美国Compton伽马射线天文台的升空,人们发现GRB在空间上呈均匀分布,且较暗的GRB极少<sup>®</sup>,这些都

表明GRB可能来自其他星系或宇宙学深空。

1997年,意大利和荷兰合作研制的BeppoSAX 卫星的升空使 GRB 的观测进入了一个新时代。 BeppoSAX不仅携带了GRB监测器,还安装了两个 宽视场X射线相机和一组4个窄视场X射线望远 镜。得益于BeppoSAX精巧的设计,人们发现一个 名为GRB 970228 的事件在GRB 暴发 8 小时后存在 X射线余辉,其流量几天内随着时间呈幂率衰减<sup>®</sup>, 随后地面望远镜也看到了它的光学余辉<sup>®</sup>。两个多 月后,美国地面光学望远镜 Keck-II 有幸观测到另 一个GRB(GRB 970508)的光学余辉,并通过余辉中 的一条金属吸收线,认证这个GRB来自一个红移为 0.835 的星系<sup>10</sup>,确认了 GRB 的确来自系外星系。 GRB 970508 的射电余辉也第一次被观测到,其强 度在最初几天表现为涨落,随后以幂律的形式随时 间衰减<sup>13</sup>。余辉的发现不仅使GRB的观测从秒量级 延伸至更长的时标,还将GRB探测的波段从伽马射 线延伸至光学甚至射电波段,丰富了科学家探究 GRB的手段。

进入 21 世纪,科学家们依旧不懈地探索着 GRB 的奥秘。GRB 作为一种短时间剧烈释放能量 的过程,人们自然将它与超新星联想在一起。根据 时间特征,GRB 可分为长暴(大于 2 s)和短暴(短于 2 s)两类(见图 2),这两类 GRB 的起源很可能是不同 的。2003年,美国、法国和日本合作的HETE-2空间 望远镜发现一个名为 GRB 030329 的长暴与超新星 SN2003dh 明确成协<sup>49</sup>。这是一个里程碑式的发现, 它揭示了 GRB 与超新星之间存在千丝万缕般的联 系。SN2003dh是一个Ic型超新星,前身星质量较大, 理论认为它的爆发遗留下的极有可能是个黑洞。

2004~2008年,美国的Swift与Fermi两台大型 空间望远镜升空,大大增加了GRB的观测样本。 Swift正如它的名字一样敏捷,在定位精度上有了提 升,帮助人们发现了大量高红移的GRB,为研究高 红移星系的形成以及宇宙早期再电离提供了线索。 此外,Swift还观测到了短暴的余辉,由此确定部分 短暴位于宿主星系恒星形成区的星系外边缘,这暗



图2 GRB依据持续时间分为长暴(大于2s)和短暴(小于2s)两类,这里Tso表示探测光子的累计计数从超过背景的5%至95%所用的时间<sup>18</sup>

示了短暴可能起源于致密双星的并合<sup>®</sup>。Fermi卫 星则发现许多GRB总是先看到keV至MeV的脉 冲,而100MeV以上的光子总是较晚到达<sup>®</sup>,大多数 GRB从keV到GeV的能谱呈现为"Band"谱(光滑连 接的双幂律分布)。2017年8月17日,Fermi如往常 一般预警了一个名为GRB170817A的短暴,而且巧 合的是,地面的LIGO/VIRGO引力波探测器分别探 测到了引力波事件GW170817,这个引力波事件在 空间上与Fermi的GRB事件吻合,其他望远镜也发 现了相关的千新星事件<sup>®-®</sup>。这一系列的观测确认 了首例双中子星并合事件这一史诗级别的发现,同 时也证实了短暴是双中子星并合的产物。

GRB究竟如何产生?这是个困扰人们几十载 的问题。首先从能源机制入手,我们可以估计一次 GRB所释放的能量可达10<sup>22</sup> erg之多,这是多么剧 烈的能量释放!最短的GRB不过仅1 ms左右,如 果乘以光速,便可推知其静止的辐射区尺度约为 300 km,星际中如此狭小的区域就只能是致密星 了。若要如此巨大的能量集中在很小的区域内,必 然要产生"火球"。如图3所示,在标准火球模型的 框架下,中心引擎喷出的不同速度的物质碰撞产生 内激波,内激波把火球定向运动的动能转化为无规 则运动能量并放大波前磁场。当这些抛射物再扫 过介质时,反向激波进一步将定向运动的动能转化 并产生瞬时光学辐射,而正向激波则产生余辉。



图3 GRB的标准火球模型

X射线余辉的观测,也为揭示GRB中心引擎提 供了重要线索。图4为余辉的光变曲线,其主要阶 段可概括如下<sup>®</sup>:I.陡峭衰减阶段;II.浅衰减阶段, 大约在GRB几百秒左右,光变曲线开始变平,该阶 段存在能量的连续注入;III.正常衰减阶段;IV.后 喷流阶段,大约发生在GRB几万秒之后;V.耀发阶



段,为中心引擎的能量间歇性暴发所致。若要求中 心引擎间歇地释放能量,喷出的火球还必须具有极 高的光度,满足这些要求的致密星能源可能是黑洞 的吸积系统、强磁场毫秒脉冲星或磁星<sup>30</sup>。然而究 竟是它们之中的哪种天体在为GRB提供着能量,需 要我们进行更深入地探索。

#### 2.2 神秘的来电:FRB

2007年,Lorimer团队在澳大利亚Parkes望远 镜的脉冲星巡天历史数据中,意外地发现了一个持 续时间约为几毫秒的"射电闪光"(见图5)<sup>®</sup>。科学家 随后发现诸如此类的射电闪光事件在宇宙中普遍 存在,天文学界最终将这种现象命名为快速射电暴 (Fast Radio Burst,简称FRB)。类似于GRB,FRB同 样具有持续时间极短(持续1ms左右),能量释放剧 烈的特征。一个普通的FRB几毫秒内释放的能量 相当于太阳辐射一天甚至一年的总能量。此外,观 测还发现FRB同GRB一样均匀地分布在天球的各 个方向,且它们具有比较大的色散量,其数值往往 超出了银河系色散量的预估大小,因此科学家们推 测FRB来自银河系以外更遥远的角落。

科学家们做了许多努力试图解释 FRB 的起源。这样一种剧烈的能量释放过程,总让人联想到超新星和 GRB,因此人们猜测 FRB 起源于一些致



图 5 第一例快速射电暴的发现:FRB 010724 的瀑布图,横轴为时 间,纵轴为观测频率,黑色的亮带表示FRB 信号,其余雪花部分表 示噪声点(图片引用自文献物)

密星相关的灾难性事件模型,如超新星爆发或者双 致密天体并合等。然而,眼下尚未发现任何FRB事 件与超新星爆发、引力波或者GRB事件明确成协。

2016年,一个名为FRB 121102的事件重复地 出现在了它最初被探测到的天区<sup>20</sup>,这种能够在同 一位置重复出现的FRB被称为重复暴。人们意识 到,既然它们能够重复,就不应该起源于一次性的 灾难性事件。重复暴的发现使科学家们重新思考 FRB究竟起源于何种极端的天体物理过程,不过好 在重复暴的可重复性,提供了更多关于它物理起源 的信息,也对FRB的精确定位有很大帮助。2017 年,人们通过对FRB 121102的监测,首次实现了 FRB的精确定位。观测发现FRB 121102来自一个 红移为0.193的矮的恒星形成星系,证实了FRB的 确来自银河系以外<sup>30-30</sup>。

既然很难直接揭开FRB的庐山真面目,不妨从 它所处的周遭环境入手。2018,科学家发现FRB 121102 具有极高的Faraday旋转量<sup>30</sup>,故而推测 FRB 121102 源附近存在一个Faraday屏障,这个屏 障贡献了极强的磁电离环境。对比银河系内的脉 冲星发现,绝大多数脉冲星都不具有如此之高的磁 电离环境,仅有PSR J1745+2900 与FRB 121102 相 近。有趣的是,PSR J1745+2900 是一颗位于银河系 中心附近的磁星,它的磁场环境极大程度上受到了 银河心中心超大质量黑洞的影响。因此,我们可以 猜测FRB 121102 周遭同样存在着这样一个大质量 黑洞,然而FRB 121102 却并非位于其宿主星系的 中心,Faraday屏障的真面目也成为了一大谜题。

2019年,加拿大氢强度测绘实验(CHIME)意外 地发现了第二例重复暴<sup>®</sup>,而随后更多新的重复暴 事件陆续被报道。这些发现打破了人们对FRB的 认知,重复暴不再是个别特殊的案例,而极有可能 大量存在于浩瀚的宇宙之中。值得注意的是,在这 些重复暴当中,绝大多数都存在一些特殊的子脉冲 结构。这些子脉冲具有不同的中心频率,且会在不 同的时刻抵达探测器,看上去就好像一个子脉冲沿 着时间-频率方向进行了漂移,因而我们称这种子 脉冲结构为FRB的时间-频率漂移。类似这样的结构在FRB 121102 中亦有发现(见图 6)<sup>33</sup>,而绝大多数非重复暴中却极少见到,因此这类特征可能是重复暴特有的属性,也暗示重复暴与非重复暴很可能是两类不同的集合。

2020年4月28日,一例来自银河系内已知磁星 (SGR J1935+2154)的射电暴事件分别被CHIME团 队以及美国的暂现射电天体辐射搜寻项目 (STARE2)独立探测到<sup>38,36</sup>(图7)。这例事件在时间-频率谱上表现出与FRB高度的相似性,并且填补了 FRB与脉冲星能量带隙的空白。这一重大发现表 明FRB的起源极有可能与磁星甚至脉冲星类致密 天体有着紧密的关联。该发现被评为2020年天文 十大发现之一。

"中国天眼"望远镜(FAST)的观测为探究 FRB 的物理问题提供了新的思路。具有全世界最高灵 敏度的单口径射电望远镜 FAST已经认证了一个新 的重复暴(FRB 180301),并在监测过程中发现它的 偏振位置角以及 RM 的演化特性。类似脉冲星的旋 转矢量模型,FRB 180301的偏振位置角演化特性很 可能标志着 FRB 是来自类似中子星磁层的辐射<sup>®</sup>。 2021年,国家天文台团队利用 FAST 成功捕捉到一 千多次 FRB 121102 的重复暴事件,其暴发率最高 可达每小时 122 个,构建了迄今为止最大的单个



图 6 FRB 121102的瀑布图。AO与GB分别表示Arecibo与GBT两个不同望远镜的观测。这些FRB事件都具有多个子脉冲成分,每个子脉冲成分都具有不同的中心频率(图片引用自文献③)



图7 (a)(b)分别为CHIME、STARE2观测的SGR J1935+2154的射电暴发图像(图片引自文献99,56)

FRB源的重复暴样本<sup>®</sup>。FAST还发现了一个长期 活跃的重复暴,相比于FRB家族其他成员,这个重 复暴可能处于一个更加致密的电离环境中<sup>®</sup>。此 外,在FRB 20201124A 的跟踪观测中,我国学者还 发现这个重复暴的RM 和偏振参数有演化迹象,表 明这个FRB源很可能处在一个极其复杂的磁化电 离环境中<sup>®</sup>。

尽管目前为止已有上百例FRB事件被公布,然 而FRB的物理起源和辐射机制问题依然成谜。可 以确定的是,FRB一定是相干辐射。科学家提出的 FRB起源,大致可分为两大类<sup>®</sup>(图8),一类认为它们 来自脉冲星的磁层,是一些通过电荷束相干形成的 极亮的单脉冲,这一理论解释称为类脉冲星模型。 目前我们并没有发现FRB具有像脉冲星一样稳定 的周期,这可能是因为FRB的辐射源活动(如星震) 频繁,导致其自转周期不稳定。另一种认为它们来 自脉冲星光速圆柱以外,通过脉冲星活动触发激 波,激波的波前与抛射物的壳层发生相互作用,触



#### 现代物理知识

发脉泽辐射实现高亮度的相干射电辐射,这一过程 类似GRB,因此称为类GRB模型。这种辐射模型 预言FRB的偏振位置角不应该有太大的变化。然 而,现有的观测结果尚不能确认FRB究竟产生于何 种辐射机制,也无法确定FRB的能源来自何方。

# 3. 总结与展望

尽管脉冲星只有一个市中心尺度这么大,它却 蕴含着丰富的天文现象,特别是暂现特征的辐射, 这些辐射横跨从射电到伽马射线各个波段。超新 星爆发事件标志着一颗恒星的死亡,但也可能是致 密星生命的开始。超新星存在多样性爆发,这些复 杂的过程与致密星的形成紧密相关。这是一场中 子星与黑洞的较量,超新星经过怎么样的途径才能 形成中子星?又是怎样形成了黑洞?这些细致的 过程需要我们进一步探究。某些超新星事件与 GRB 息息相关,事实上,不论长暴还是短暴,GRB 过程的核心问题来自它的中心引擎。这些宇宙的 高能发动机究竟是中子星(特别是磁星)还是黑洞? GRB 又是通过怎样的过程进行辐射的? 而另一种 暴发现象,FRB,自发现以来十余载,科学家对它的 了解知之甚少。尽管 SGR J1935+2154 的案例暗示 了FRB与磁星之间存在着某种关联,可人们依然不 清楚FRB是通过何种机制产生的辐射? 又源自于 哪里? 观测发现的非重复暴是不是都可以重复? 破 解这些谜题必须要人们建造大型的科学设备。超 新星、GRB与FRB三者之间,看似辐射于不同的波 段,它们的中心都是致密星,特别的可能都是中子 星,或许它们三者的联系将直指中子星最核心的物 态问题,我们期待不久的将来能找到问题的答案。

#### 参考文献

- ① Clark, D. H. & Stephenson, F. R. 1977, Oxford [Eng.]; New York : Pergamon Press, 1977. 1st ed
- (2) Staelin, D. H. & Reifenstein, E. C. 1968, Science, 162, 1481
- (3) Hirata, K., Kajita, T., Koshiba, M., et al. 1987, PRL, 58, 1490
- (4) Bionta, R. M., Blewitt, G., Bratton, C. B., et al. 1987, PRL, 58, 1494
- (5) Burrows, A. & Lattimer, J. M. 1987, ApJL, 318, L63
- 6 Arnett, W. D., Bahcall, J. N., Kirshner, R. P., et al. 1989, ARAA, 27, 629
- 7 Phillips, M. M. 1993, ApJL, 413, L105
- (8) Klebesadel, R. W., Strong, I. B., & Olson, R. A. 1973, ApJL, 182, L85
- Meegan, C. A., Fishman, G. J., Wilson, R. B., et al. 1992, Nature, 355, 143
- 1 Costa, E., Frontera, F., Heise, J., et al. 1997, Nature, 387, 783
- (II) van Paradijs, J., Groot, P. J., Galama, T., et al. 1997, Nature, 386, 686
- 1 Metzger, M. R., Djorgovski, S. G., Kulkarni, S. R., et al. 1997, Nature, 387, 878
- <sup>(3)</sup> Frail, D. A., Kulkarni, S. R., Nicastro, L., et al. 1997, Nature, 389, 261
- ③ Stanek, K. Z., Matheson, T., Garnavich, P. M., et al. 2003, ApJL, 591, L17
- Ib Kouveliotou, C., Meegan, C. A., Fishman, G. J., et al. 1993, ApJL, 413, L101
- 16 Berger, E., Price, P. A., Cenko, S. B., et al. 2005, Nature, 438, 988
- (7) Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009, ApJL, 706, L138
- (18 Abbott B. P., et al., 2017a, Phys. Rev. Lett., 119, 161101
- <sup>(1)</sup> Abbott B. P., et al., 2017b, Phys. Rev. Lett., 119, 161101
- 2 Abbott B. P., et al., 2017c, ApJ, 848, L12
- 2 Abbott B. P., et al., 2017d, ApJ, 848, L13
- 2 Goldstein A., et al., 2017, ApJ, 848, L14
- 23 Savchenko V., et al., 2017, ApJ, 848, L15
- 2 Zhang, B., Fan, Y. Z., Dyks, J., et al. 2006, ApJ, 642, 354
- ② Dai, Z. G., Wang, X. Y., Wu, X. F., et al. 2006, Science, 311, 1127
- ② Lorimer, D. R., Bailes, M., McLaughlin, M. A., et al. 2007, Science, 318, 777
- ② Spitler, L. G., Scholz, P., Hessels, J. W. T., et al. 2016, Nature, 531, 202
- Bassa, C. G., Tendulkar, S. P., Adams, E. A. K., et al. 2017, ApJL, 843, L8
- 29 Chatterjee, S., Law, C. J., Wharton, R. S., et al. 2017, Nature, 541, 58
- 30 Marcote, B., Paragi, Z., Hessels, J. W. T., et al. 2017, ApJL, 834, L8
- ③ Michilli, D., Seymour, A., Hessels, J. W. T., et al. 2018, Nature, 553, 182
- CHIME/FRB Collaboration, Amiri, M., Bandura, K., et al. 2019, Nature, 566, 23

<sup>\*</sup>超新星名字是由发现的年份和一至两个拉丁字母所组成:一年中首先发现的26颗超新星会用从A到Z的大写字母命名,如超新星1987A就是在1987年发现的第一颗超新星;而第二十六以后的则用两个小写字母命名,以aa、ab、ac这样的顺序起始。

- ③ Hessels, J. W. T., Spitler, L. G., Seymour, A. D., et al. 2019, ApJL, 876, L23
- 3 Bochenek, C. D., Ravi, V., Belov, K. V., et al. 2020, Nature, 587, 59
- ③ CHIME/FRB Collaboration, Andersen, B. C., Bandura, K. M., et al. 2020, Nature, 587, 54

<sup>(3)</sup> Luo, R., Wang, B. J., Men, Y. P., et al. 2020, Nature, 586, 693
<sup>(3)</sup> Li, D., Wang, P., Zhu, W. W., et al. 2021, Nature, 598, 267
<sup>(3)</sup> Niu, C.-H., Aggarwal, K., Li, D., et al. 2021, arXiv:2110.07418
<sup>(3)</sup> Xu, H., Niu, J. R., Chen, P., et al. 2021, arXiv:2111.11764
<sup>(4)</sup> Zhang, B. 2020, Nature, 587, 45

 $x_1^2$   $x_2^2$   $x_3^2$   $x_4^2$   $x_3^2$   $x_4^2$   $x_4^$ 

# 她用物理的情趣,引我们科苑揽胜; 她用知识的力量,助我们奋起攀登!

欢迎投稿,欢迎订阅

《现代物理知识》杂志隶属于中国物理学会,由中 国科学院高能物理研究所主办,是我国物理学领域的 中、高级科普性期刊。

为进一步提高《现代物理知识》的学术水平,欢迎 物理学界的各位专家、学者以及研究生为本刊撰写更 多优秀的科普文章。投稿时请将稿件的Word文档发 送至本刊电子信箱mp@mail.ihep.ac.cn,并请将联系 人姓名、详细地址、邮政编码,以及电话、电子信箱等 联系方式附于文章末尾。

所投稿件一经本刊录用,作者须将该篇论文各种 介质、媒体的版权转让给编辑部所有,并签署《现代物 理知识》版权转让协议书(全部作者签名),如不接受 此协议,请在投稿时予以声明。来稿一经发表,将一 次性酌情付酬,以后不再支付其他报酬。

《现代物理知识》设有物理知识、物理前沿、科技 经纬、教学参考、中学园地、科学源流、科学随笔和科 苑快讯等栏目。

2022年《现代物理知识》每期定价15元,全年6 期90元,欢迎新老读者订阅。

需要往期杂志的读者,请按下列价格付款。

2020~2021年单行本每期10元;2010~2019年 合订本每本60元。 订阅方式

(1) 邮局订阅 邮发代号:2-824。

(2) 编辑部订阅(请通过银行转账到以下账号,并 在附言中说明"现代物理知识\*\*年\*\*期")

名称:中国科学院高能物理研究所

开户行:工商银行北京永定路支行

账号:0200004909014451557

(3)科学出版社期刊发行部:联系电话010-

64017032 64017539;

(4) 网上购买:搜淘宝店、微店店铺名称:中科期刊; 淘宝购买链接:

https://item.taobao.com/item.htm?spm=a1z10.3- c.w400

2-17748874504.9.3473bd0e1SdzHy&id=520828395681 微店购买链接:

https://weidian.com/item.html?itemID=2561726602 或扫描下方二维码:





淘宝网购刊

微信购刊