高能脉冲星

葛明玉¹ 度攸隶¹ 闫林丽²

(1. 中国科学院高能物理研究所 100049; 2. 安徽建筑大学数理学院 230601)

1. 观测与发现

脉冲星不仅仅在射电波段有丰富的物理现象, 在红外、光学、紫外、X射线和伽马射线波段也存在 丰富的物理现象。目前在X射线波段和伽马射线 波段已经观测到百余颗脉冲星,而红外、光学、紫外 波段,发现的脉冲星相对比较少。在此,将具有X 射线/伽马射线波段辐射的脉冲星称为高能脉冲星, 它们不仅仅辐射的光子能量高,其辐射特征与射电 也是不相同的。

从图1可以看出,大气对于不同波段的电磁波 的吸收是不一样的,尤其会对X射线和伽马射线光 子有强烈的吸收。这对于生活在地球的生物而言 起到很好的保护作用,但是这也导致要研究这些波 段的脉冲星辐射,就需要到大气层外面观测。随着 探测技术的发展,人们将目光也逐渐投向太空。 1962年,天文学家里卡尔多·贾科尼等人通过探空 火箭将探测器送入太空,并观测到第一个太阳系外 的X射线源,天蝎座X-1。由于火箭探测,滞空时 间非常短,于是将探测器搬到了卫星上。1970年, 美国宇航局(NASA)将人类第一颗天文观测卫星 UHURU发射升空,产生了很多重要的发现,并引领 后续更多X射线天文卫星的升空,才真正将X射线 天文学带入繁荣。UHURU 卫星观测首日, 便获得 超过以往所有时长的X射线观测数据,并且发现人 马座 X-3 的 X 射线脉冲辐射, 这是吸积中子星双星 系统,即中子星通过吸积伴星气体,形成吸积盘^①。 1982年 Backer Kulkarni 发现 X 射线毫秒脉冲星 (Millisecond pulsar),这类脉冲星具有极好的计时特 性,长年计时稳定性媲美原子钟,工程应用前景广 阔²。同样,在20世纪70年代,在伽马射线波段也 探测到了脉冲星,如来自蟹状星云和船帆座超新星 遗迹中脉冲星的伽马射线的辐射。当前在役的 X 射线天文望远镜/探测器有Chandra、XMM-Newton、 NICER、Swift、INTEGRAL等。需要提到的是,IXPE 已经发射升空,开启了X射线偏振观测的窗口,未

图1 大气在各个波段对电磁波的吸收情况(图来自于维基百科)

来在脉冲星的X射线偏振方面将有观测上的突破。 在伽马射线波段,CGRO、AGILE以及费米伽马射 线望远镜则已经发现了270多颗伽马射线脉冲星³。

我国高能脉冲星的观测历史最早可以追溯到 20世纪80年代,采用气球观测的方式。1984年5月 23日,3万立方米的高空气球带着"HAPI-1"首次实 现平流层高度上对蟹状星云脉冲星33毫秒周期信 号的X射线观测。自此之后,我国学者也逐渐将 目光放到了空间探测上。虽然起步很晚,但是逐 步有零的突破。如天宫2号上的"伽马暴偏振仪 (POLAR);正在运行的第一颗天文卫星"硬X射线 调制望远镜(HXMT)"和怀柔一号(GECAM)(图2); "悟空号(DAMPLE)"也观测到了部分伽马射线脉冲 星^{④⑦}。虽然我们取得了观测成绩,但是尚未用国内 的观测设备发现新的高能脉冲星。我国正在研制 的X射线卫星,如爱因斯坦探针、中法合作伽马暴 卫星(图 3)等,以及未来的 eXTP 卫星,这些卫星具 有发现新的高能脉冲星的潜力,为国际在高能脉冲 星的研究领域贡献中国的力量^{®-®}。

目前已经发现的脉冲星有3000多颗,它们特征 各异,种类繁多,如果按照能量来源分为以下几种: 转动供能脉冲星,这类脉冲星的辐射能量来源于星 体的自转能,例如Crab、Vela等一些孤立的脉冲星; 吸积供能的脉冲星,通过吸积伴星的物质,将引力 势能转换为电磁辐射,例如大质量X射线双星、低 质量X射线双星、暂现源等。反常X射线脉冲星 (AXP)和软伽马射线重复暴(SGR),这类源通常被认 为是磁场供能(参见本期林琳的文章《磁星》)。X射 线暗的孤立中子星(XDINS),如果中子星各种可能 的能源均消耗殆尽,那么星体只能辐射剩下的热 能,这类中子星称之为X射线暗的孤立中子星(参见 本期全号的文章《热辐射主导的脉冲星》)。

对于脉冲星的命名,在历史上有不同的方法。 以现在的惯例,"PSR"为前缀,后接它的赤经和赤纬 坐标,如PSR J0534+2200。考虑观测历史,还有其 他的命名方法,如星表、望远镜名称加赤经和赤纬 坐标,星座里面的第几个亮源,具体的例子:4U 1608-52(4U是源表),又如Cen X-3等(Cen是人马座

图2 慧眼HXMT与怀柔一号

图3 爱因斯坦探针与中法合作SVOM

的缩写)。考虑到观测历史和大家的使用习惯,这些名称也是一直沿用至今。

在天文观测中,如果是X射线光子或者伽马射 线光子,大家习惯用能量表示,而不用频率或者波 长表示。通常见得比较多的是keV、MeV、GeV、 TeV和PeV,分别对应于:10³ eV,10⁶ eV,10⁹ eV,10¹² eV,10¹⁵eV。电子伏特 eV代表一个电子经过1伏特 的电位差加速后所获得的动能1eV=1.602×10⁻¹⁹ J。

2.转动供能情形

高能脉冲星已经发现超过300颗,例如年轻而 有活力的蟹状星云脉冲星(Crab)、近距离却相对年 老的 Vela 脉冲星和 Geminga 脉冲星。在周期-周期 导数图上,高能脉冲星的分布也非常广泛,除了磁 星之外,与射电脉冲星的分布相似(参见本期卢吉 光的文章《射电脉冲星》)。为了描述更加清晰,在 此将高能脉冲星中的毫秒脉冲星放在后面专门叙 述,而磁星的相关内容见本期林琳的文章《磁星》。 高能脉冲星的特征年龄跨度比较大,从几百年到几 亿年,但是大部分已知源的特征年龄小于百万年。 其磁场强度在10¹²G的量级,与射电脉冲星类似。 与射电脉冲星一样,高能脉冲星也存在周期跃变与 计时噪声等变化行为。观测发现,许多年轻的高能 脉冲星与超新星遗迹成协,并且被星风云所包围。 研究表明该星云由脉冲星本身提供能量,并发射出 同步辐射,如Crab星云[®]。

高能脉冲星的能谱根据其特征,可以分为如下 三类:类Crab源,它们是最年轻的一类脉冲星,它们 表现出强的脉冲辐射特征,非热辐射呈幂律谱,典 型的源有Crab脉冲星(图4)、PSR B1509-58、PSR B0540-69等;类Vela脉冲星,年龄大约在10⁴~10⁵ 年,仅Vela脉冲星观测到了弱的光学辐射。这类脉 冲星的X射线能谱复杂,不是简单的幂律谱,脉冲 轮廓随能量变化也很复杂,并且各个波段的相位不 一致;类Geminga脉冲星(约10⁵年)的能谱是热谱和 非热谱的混合,脉冲轮廓也随能量的变化而变化。 对于更年老的脉冲星(>10⁶年)中,也探测到了X射 线辐射,在软X射线区域的辐射以热成分为主。在 伽马射线波段的能谱,则都是超指数截断的幂率 谱,截断能量通常在1~5 GeV附近。而MAGIC的 观测表明,Crab脉冲星的脉冲辐射可以高达1 TeV。 LHAASO的观测表明在Crab方向观测到能量为 1.5 PeV的光子²⁰³。

毫秒脉冲星属于年老的脉冲星,自转非常快, 其中自转最快的周期是1.4 ms,周期减慢率也远小 于正常脉冲星。它们遍布整个银河系,并不像年轻 的脉冲星那样集中在银道面上。在球状星团中也 发现了许多毫秒脉冲星,例如PSR B1821-24就是 第一颗在球状星团(M28)中被发现的孤立的毫秒脉 冲星。毫秒脉冲星也存在X射线和伽马射线辐射, 并且也有吸积毫秒脉冲星(详见下一节)。此类脉冲 星的形成有两种可能的起源:在早期的双星系统 中,可能是伴星发生超新星爆发致使两星分离,双 星系统被破坏:又或者主星的辐射使得伴星被蒸 发,遗留一颗孤立的脉冲星。毫秒脉冲星通常特征 年龄比较大,约10¹⁰年,以及较弱的磁场强度(~10⁸ G)。毫秒脉冲星的自转非常稳定,几乎没有周期跃 变发生,其稳定性可媲美原子钟。目前认为,毫秒 脉冲星起源于正常脉冲星的吸积再加速,第一颗吸 积毫秒脉冲星 SAX J1808.4-3658(图 5)的发现,间 接证实了这一图像[®]; 而毫秒脉冲星 PSR J1023+ 0038和IGR J18245-2452 直接观测了吸积相和脉冲 相的转换,直接印证了这一图像50。让人意外的 是,具有伽马射线辐射的毫秒脉冲星也很多,目前 已有127颗毫秒脉冲星探测到伽马射线脉冲。

脉冲星的射电轮廓相对较窄,而高能波段的轮 廓相对较宽,这也反映了它们辐射区位置的不同。 不同脉冲星的轮廓波形也有明显的差异,有单峰、 双峰和多峰结构。不同脉冲星即使脉冲中峰的个 数相同,波形也不完全一致,这反映出了脉冲星辐 射的独特性。对年轻脉冲星而言,脉冲轮廓形状随 时间发生演化,例如Crab脉冲星的射电和X射线脉 冲的双峰间距均随时间增加,而双峰的峰宽随时间 变窄^{©®}。同时,脉冲辐射是由脉冲星的自转能损提

供,自转能损随时间变化,脉冲星的脉冲流量也会随着变化。例如,Crab脉冲星的X射线脉冲流量随时间逐渐降低[®]。近些年,高能脉冲星也探测到与射电脉冲星类似的状态转换的现象,如自转减慢率、光度或者脉冲轮廓的变化等。对于高能脉冲星而言,

目前可以确认的源有 PSRs J2021+4026、B0540-69和 J1124-5916,值得注意的是后面两颗脉冲星还是年 轻脉冲星,这些样本有利于揭示脉冲星的磁场结构 和辐射特性的变化。对于 PSR B0540-69(图 6),从 脉冲星自转减速率突变,星风增强到星风云变亮的

图6 PSR B0540-69及其星风云的光度演化

时间和逻辑关系,也证明星风是导致该脉冲星自转 变慢的主要原因³⁻²。

高速自转的脉冲星有一个与它共转的磁层,磁 层中充满了带电粒子,这些粒子被强电场加速,通 过曲率辐射、同步辐射、康普顿散射等物理过程产 生高能辐射,发出X射线和伽马射线光子。脉冲星 辐射模型就是要对粒子的产生路径、加速过程、加 速区域以及辐射机制等问题进行研究。当前比较 流行的辐射模型有极冠模型(Polar cap)³⁰、外间隙模 型(Outer gap)^{@-®}、缝间隙模型(Slot gap)[®]、环模型 (Annular gap)[®]等。这些模型中加速区和辐射区的 位置是不同的,但都位于光速圆柱面内(图7)。近年 来,又有新的磁层模型被提出,例如force-free inside and dissipative outside (FIDO)模型[®],各个电流片模 型²⁰¹,以及动力学模拟(kinetic/particle-in-cell simulations)³⁰²³等研究结果。这些新的模型和研究结果 指出高能辐射产生于光速圆柱面之外的区域。这 些经典的偶极辐射模型和最新的磁层模型能够解 释当前的一些观测结果,例如脉冲轮廓形状和相位 分解谱,但没有一个模型是普适的。对脉冲星辐射 区结构的研究依然需要构建新的模型,并经受观测 结果的约束和检验。

3. 吸积供能情形

吸积供能的脉冲星,辐射来源主要为双星系统 中来自伴星的物质释放相对于中心致密星的引力 势能,最高能将吸积物质静止质量的十分之几转换 为高能辐射。吸积是指在重力作用下,物质逐渐积 累或沉积到物体表面。如果吸积的物体是一颗中 子星,那么物质就会落到中子星表面,并被加速到 极高的速度。当物质到达中子星的表面时,它被迅 速减速,接近自由落体的动能以热的形式辐射出 去。高能辐射的产生是物质从光学伴星吸积到中 子星上的结果。

根据伴星的质量,X射线双星通常可以分成 "大质量X射线双星"(HMXB)和"低质量X射线双 星"(LMXB)。X射线双星系统中的吸积物质,可以 通过双星系统形成的洛希瓣吸积,亦可通过星风直 接吸积,其吸积过程的示意图如图8所示。在 LMXB系统中,伴星通常会膨胀填满系统的临界洛 希瓣。超过临界洛希瓣的物质受到致密星引力的 作用,被吸积到致密星。而由于吸积物质具有角动 量,一般很难直接落到中子星上,而是逐步靠近中 子星。由于吸积物质之间存在相互摩擦,角动量被 部分转移带走,大部分物质逐渐往中子星靠近,形 成了吸积盘。在该系统中,伴星通常为主序星,或 为白矮星、红巨星,在银河系内发现的LMXB已超过 139个。其致密星的磁场一般相对较弱,为~10°10

图8 吸积脉冲星简图

高斯。在吸积伴星物质的同时会导致中子星自身 的转动速度发生变化³⁹。

对于低质量 X 射线双星还有很多的子类,例如 根据其在双色图(color-color diagram,简写为 CCD, 如图 9 所示)上的轨迹不同,中子星系统可分为 atoll 源和 Z 源,目前已分别发现 25 和 8 个源。atoll 源和 Z 源的区别是由吸积率和磁场决定的, atoll 源吸积 率小,磁场较弱(10⁸~10⁹ G),而 Z 源吸积率大,磁场 较强(10⁹~10¹⁰ G)。

对于磁场较弱的中子星,吸积物质可通过吸积 盘到达中子星表面。随着吸积的进行,物质(大部 分是氢和氦)会在中子星表面聚集。吸积物质层一 般在积聚到几米厚时,在吸积物质下层就会产生核 聚变。吸积物质层的温度是由吸积物质的核聚变 和冷却过程(热辐射)共同决定的,当物质增长率和 冷却过程达到平衡时,表现为稳定的辐射,能谱为 黑体谱。若吸积物质的增长速度大于其冷却速度, 一个核暴就发生了。这种核聚变称为I型X射线 暴,暴发持续时间一般几十秒,最高可达爱丁顿光 度,比整个吸积盘的光度都高,能谱为黑体谱。只 有在中子星系统中才有I型X射线暴,可以作为认 定中子星的依据。如图10所示,I型X射线暴可以 作为探针研究冕的物理性质,即暴发过程中软光子 冷却冕,在观测中看到高能光子的缺失现象,这个 现象已被慧眼HXMT的在单个I型X射线暴观测中 发现[®]。

而在HMXB系统中,伴星通常为光谱型为O型 或B型的大质量恒星,有些系统的伴星也为蓝超巨 星或"沃尔夫-拉叶"星,目前已经发现94颗。在大 质量双星系统中的中子星磁场通常为10¹²~10¹³高 斯,磁场一般对伴星的吸积物质在半径为10⁴千米 的地方开始作用,并将物质沿着磁力线的方向吸积 到中子星的磁极冠附近,在那里通过激波等方式将 引力能量转换为高能辐射释放掉。如图11所示,在 极冠区形成"堆"状的结构,由于其辐射方向主要沿 着中子星表面法线方向,故称之为"铅笔模型"。随 着中子星光度的升高,吸积物质首先通过激波过程 显著降低速度,随后沉积到中子星表面。在激波面 到中子星表面这段距离形成吸积柱。通常认为,吸

图10 慧眼HXMT对I型X射线暴的观测

图11 吸积脉冲星简图

而只能从吸积柱的法线方向逃逸,形成类似风扇的 结构,故称之为"风扇模型"[®]。这类系统的双星绕 转轨道通常为中等偏心率的椭圆轨道,在中子星经 过近星点附近会发生周期性的X射线爆发,我们称 之为"一类爆发"(Type I bursts)。"第二类爆发" (Type II burst)通常的X射线流量是"宁静期"X射线 流量的几千倍,这类爆发的光度可到中子星的爱丁 顿光度。对于这一类源的观测能谱中,存在回旋吸 收线的特征,已有30多颗源观测到该特征。回旋吸 收线是直接测量脉冲星附近磁场强度的方法。目 前基频回旋吸收线能量最高的源是GRO 1008-57, 能量达到90 keV(图12所示)[®]。

另外,需要特别提到的是,对于吸积供能的系统,爱丁顿光度为一般情况下吸积天体所能达到的最大光度。因为在吸积物质下落至中心致密天体的过程中,一方面吸积物质产生辐射,同时其下落过程会受到辐射压阻止。当辐射压与吸积物质受到的引力达到流体静力平衡时,将无法继续通过吸积产生更高的光度。对于超爱丁顿吸积的超亮X 射线源(ULX),其光度超过了爱丁顿极限。M82 X-2 发现的脉冲星信号拓展了超亮X射线源的类型,即 ULX系统的致密星也可以是脉冲星[®]。目前已经发现了9颗超亮X射线脉冲星,包括一颗河内的X射

线双星 Swift J0243.6+6124。对于这类脉冲星,其 表面的强磁场使得吸积物质被束缚在磁力线上运 动。故在磁极靠近中子星表面处,会形成柱状或者 漏斗状的几何结构。这种几何为超爱丁顿的机制 提供了一个解释,即辐射可以从漏斗的两侧逃逸出 来,如果漏斗附近的磁场足够高(>1013高斯)那么在 垂直于磁场方向的散射截面会低到低于汤姆孙散 射截面。Bachetti 等认为,超爱丁顿光度是由于集 束效应导致的[®]。然而,观测到的正弦形状的脉冲 轮廓与模型预期的窄光束不吻合,除非中子星有着 特定的磁倾角,"风扇模型"才能贡献所观测到的脉 冲轮廓。另一种观点认为,超爱丁顿吸积来自于极 端的伴星质量转移率,新的观测结果显示M82 X-2 的双星轨道衰减证明了该系统中存在极端的质量 转移率,而不需要集束效应产生超爱丁顿光度。慧 眼-HXMT 对超亮 X 射线源 Swift J0243.6+6124 的 详细观测表明,发现吸积盘内区发生了从"气体压 主导"变为"辐射压主导"的转变。一系列吸积脉冲 星在爆发过程中的时变和能谱的监测,帮助我们了 解吸积盘和磁层的几何与物理过程,以及中子星磁 场、物态等本征信息。

4. 高能脉冲星的研究前景与意义

目前,国内外已有更大有效面积、高能谱分辨率 和偏振观测能力的X射线望远镜在推动立项中,如 我国的eXTP、欧洲Athena、美国的Strobe-X等;MeV 波段近几十年以来一直没有高灵敏度的观测仪器,因此天文界也推动MeV波段的望远镜建造,如美国已经批准一个小型项目COSI,我国也在推动具有更高灵敏度的MeV望远镜的建设,如MeVGRO等。这为高能脉冲星的观测提供一个更好的契机。

通过对毫秒脉冲星热斑的观测,测量中子星的 质量半径,是目前研究中子星物态比较可行的方 案,这也正是NICER的观测方法,由于受到其有效 面积和本底的影响,NICER只能针对少数的毫秒脉 冲星进行观测,限制精度在10%。未来的eXTP卫 星,在软X射线波段,有大的有效面积和良好的本 底控制,在更高的精度上测量到更多的毫秒脉冲星 样本,有望解决中子星的物态问题(参见本期高勇 的文章《中子星内部结构》)。在脉冲星的辐射机制 方面,正在运行的IXPE和未来的eXTP将会对脉冲 星的X射线偏振进行高精度测量,将会直接"看到" X射线辐射磁场结构。与X射线和伽马射线相比, 目前仅有5颗脉冲星在MeV波段观测到的脉冲辐 射,这个数目是非常少的。目前,NASA已经批准 的COSI项目,预计可以观测到一批源,这对研究脉 冲星的辐射提供非常好的契机。对稳定的X射线 脉冲星而言,还有实际应用的前景,如X射线脉冲 星导航。

参考文献

- ① Giacconi, R., Gursky, H., Kellogg, E., et al. 1971, ApJL, 167, L67.
- (2) Backer, D. C., Kulkarni, S. R., Heiles, C., et al. 1982, Nature, 300, 615.
- (3) Abdollahi, S., Acero, F., Ackermann, M., et al. 2020, ApJS, 247, 33.
- ④ 基于天宫二号 POLAR 的脉冲星导航实验,中国科学:物理学、力学、天文学,47,09,2017.
- (5) Zhang, S.-N., Li, T., Lu, F., et al. 2020, SCPMA, 63, 249502.
- ⁽⁶⁾ Chen, Y., Huang, J., Li, X., et al. 2020, SCPMA, 50, 129507.
- ⑦ Munoz Salinas, M., Wu, X., Gargano, F., et al. 2019, ICRC2019, 36, 587.
- (8) Yuan, W., Zhang, C., Chen, Y., et al. 2018, SCPMA, 48, 039502.
- ⑨ You, Z., Guo, J., Hao, J., et al. 2002, IAF abstracts, 34th COSPAR Scientific Assembly, 668.
- ⁽¹⁾ Zhang, S., Santangelo, A., Feroci, M., et al. 2019, SCPMA, 62, 29502.
- I Li, X. H., Lu, F. J., & Li, Z. 2008, ApJ, 682, 1166.

- D Ansoldi, S., Antonelli, L. A., Antoranz, P., et al. 2016, AAP, 585, A133.
- B Lhaaso Collaboration, Cao, Z., Aharonian, F., et al. 2021, Science, 373, 425.
- (1) Wijnands, R. & van der Klis, M. 1998, Nature, 394, 344.
- [5] Archibald, A. M., Stairs, I. H., Ransom, S. M., et al. 2009, Science, 324, 1411.
- ⁽¹⁶⁾ Papitto, A., Ferrigno, C., Bozzo, E., et al. 2013, Nature, 501, 517.
- D Lyne, A., Graham-Smith, F., Weltevrede, P., et al. 2013, Science, 342, 598.
- ^(B) Ge, M. Y., Yan, L. L., Lu, F. J., et al. 2016, ApJ, 818, 48.
- ⁽¹⁾ Yan, L. L., Ge, M. Y., Lu, F. J., et al. 2018, ApJ, 865, 21.
- 20 Ge, M. Y., Lu, F. J., Yan, L. L., et al. 2019, Nature Astronomy, 3, 1122.
- 2 Xu, R. X. & Qiao, G. J. 2001, ApJL, 561, L85.
- 2 Tong, H. 2016, SCPMA, 59, 5752.
- ⁽²⁾ Daugherty, J. K. & Harding, A. K. 1994, ApJ, 429, 325.
- 2 Cheng, K. S.; Ho, C.; Ruderman, M. 1986a, ApJ, 300, 500.
- ⁽²⁾ Cheng, K. S.; Ho, C.; Ruderman, M. 1986b, ApJ, 300, 522.

- 20 Cheng, K. S., Ruderman, M., & Zhang, L. 2000, ApJ, 537, 964.
- ⑦ Dyks, J. & Rudak, B. 2003, ApJ, 598, 1201.
- 28 Du, Y.J., Han, J.L., Qiao, G. J., et al. 2011, ApJ, 731, 2.
- ② Brambilla, G., Kalapotharakos, C., Harding, A.K., et al. 2015, ApJ, 804, 84.
- 3 Bai, X.-N. & Spitkovsky, A. 2010, ApJ, 715, 1282.
- 3 Contopoulos, I. & Kalapotharakos, C. 2010, MNRAS, 404, 767.
- ③ Cerutti, B., Philippov, A. A., & Spitkovsky, A. 2016, MNRAS, 457, 2401.
- 3 Philippov, A. A. & Spitkovsky, A. 2018, ApJ, 855, 94.
- 3 Ghosh, P. & Lamb, F. K. 1979, ApJ, 234, 296.
- 3 Chen, Y. P., Zhang, S., Qu, J. L., et al. 2018, ApJL, 864, L30.
- 30 Becker, P. A., Klochkov, D., Schönherr, G., et al. 2012, A&A, 544, A123.
- 37 Ge, M. Y., Ji, L., Zhang, S. N., et al. 2020, ApJL, 899, L19.
- ③ Bachetti, M., Harrison, F. A., Walton, D. J., et al. 2014, Nature, 514, 202.
- ③ Doroshenko, V., Zhang, S. N., Santangelo, A., et al. 2020, MN-RAS, 491, 1857.

科苑快讯

我们经常不慎吃下匪夷所思的恶心东西

人类会在不知不觉间吞下令人恶心的碎屑,从午餐 时随机吃下的动物器官,到睡觉时咽下的小牙齿。只要 你不去想它有多恶心,通常不会因此而造成健康问题。

下面是一些最恶心、最奇怪的东西,它们会在你 不知情的情况下进入喉咙。

从田野到市场的移动过程中,无数节肢动物会在 食物上留下痕迹。美国食品药品管理局(Food and Drug Administration,FDA)表示,从通心粉到葡萄酒的 任何食物,其中含有几十到数百个小虫碎块时,监管 机构才会认定它们受到了污染。

食品加工厂中四处乱窜的害虫将其皮毛和其他 东西带人无数的产品中,举个例子,FDA允许每100克 花生酱含有一根老鼠毛,这意味着一个16盎司(约 453.6克)的罐子里可能有4根老鼠毛。

一些水果、蔬菜和其他食品在从农场到餐桌的运输过程中,不可避免地会发霉。根据菌丝体和美国联邦标准,山姆大叔允许大约3%的灌装桃子和5%的香料(如肉桂)发霉。

你可能会认为,人们在吞下一颗牙齿时,一定会 注意到,但事实并非如此:在有关意外吞下牙齿而住 院的病例研究中发现,假牙占被吞牙齿的4%~8%,其 中很多是在瞌睡中发生的。

小孩子几乎会把任何东西放进嘴里,20世纪90年 代的一系列粪便样本调查表明,平均每个儿童每天要消 化0.5克土壤,一年也就是几盎司(1盎司~28.3克)而已。

(高凌云编译自2022年4月25日 Popular Science 网站)