直接CP破环的发现

童国梁 摘译

(中国科学院高能物理研究所 100049)

由质子束轰击靶产生的 K⁰在产生时则以 CP 为 正的本征态 K⁰₁和 CP 为负的本征态 K⁰₂以同等比例 相干叠加方式演变, K⁰₁迅速衰变为 $\pi\pi$ 终态;相反, K⁰₂有长得多的寿命,并且主要衰变为 3π 或半轻子 终态 π lv。1964年在 BNL上首次观察到在经过足够 多个 $c\tau_s$ 时间以后,还是有相当数量的两 π 衰变,显示 出 CP 是不守恒的。长寿命和短寿命的质量本征态 K⁰_L和 K⁰_s并不是纯的 CP 本征态,而包含了小的相反 的 CP 种类的混合,这类现象被称为"混合中的 CP 破坏"或"间接 CP 破坏"。

如果一个粒子X衰变到终态f的振幅 $A(X \rightarrow f)$ 和它CP共轭态 \bar{X} 衰变到 \bar{f} 的幅度 $A(\bar{X} \rightarrow \bar{f})$ 不同,那么这类CP破坏被称为"直接CP破坏"。这时CP为负的 K_2^0 到 $\pi\pi$ 终态的衰变幅度就可能不为零。 CERN的NA31实验报道了第一次发现CP直接破坏的证据。本文介绍CERN在这方面开展的多年实验研究。

1964年在中性K介子系统发现CP不守恒以后 不久,开展了寻找源于混合主导效应之外的直接 CP破坏成分的实验。直到NA31实验报道发现第 一个证据,此举差不多已用了20年的时间,接着又 用了10年时间使此发现建立起5倍标准偏差的显 著性水平。本文介绍两个CERN实验,NA31和 NA48,他们所使用的束流、探测器和分析方法,这 两个组对这些结果做出了关键贡献并为精密测量 建立了新的标准。

1. 引言

1.1 CP破坏研究的早期阶段

在一个CP守恒的世界里,由质子束流轰击靶

的相互作用中产生的 K⁰在产生时为 K⁰ 和 K⁰₂ 以同 等比例相干叠加方式演变,这里 K⁰₁ = (K⁰ + \bar{K}^0)/ $\sqrt{2}$ 是 CP 为正的本征态,而 K⁰₂ = (K⁰ - \bar{K}^0)/ $\sqrt{2}$ 是 CP 为 负的本征态。CP 为正的 K⁰₁ 迅速衰变为ππ终态。 相反, K⁰₂ 有长得多的寿命,并且主要衰变为于相空 间不利的 3π或半轻子终态πlv。两者的寿命也大不 相同,前者 cτ_s=2.68 cm 而后者 cτ_l=15.34 m。因此很 容易把这二个本征态分开:只需离靶足够远,例如 20个或者更多一点τ_s,我们就不认为有任何两π的衰 变发生了。

1964年克里斯滕森(Christensen),克罗宁(Cronin),菲奇(Fitch)和特来(Turlay)在BNL首次观察 到在经过足够多的 $c\tau_s$ 以后,还是有相当数量的两 衰变,这显示了CP是不守恒的。1967年确认观察 到在中性K介子的 $\pi^+1^-\bar{\nu}$ 和 $\pi^-1^+\nu$ 的衰变率是不对 称的,对此现象的最简单的解释是认为长寿命和短 寿命的质量本征态 K^0_{L} 和 K^0_{s} 并不是纯的CP本征 态,而包含了小的相反的CP种类的混合,可以用一 个复参数 ϵ 表示:

$$\mathbf{K}_{\mathrm{L}}^{\mathrm{0}} = \frac{\left(\mathbf{K}_{2}^{\mathrm{0}} + \epsilon \mathbf{K}_{1}^{\mathrm{0}}\right)}{\sqrt{\left(1 + \epsilon^{2}\right)}},\tag{1}$$

$$\mathbf{K}_{\mathrm{s}}^{\mathrm{0}} = \frac{\left(\mathbf{K}_{\mathrm{1}}^{\mathrm{0}} + \epsilon \mathbf{K}_{\mathrm{2}}^{\mathrm{0}}\right)}{\sqrt{\left(1 + \epsilon^{2}\right)}}$$
(2)

这被称为"混合中的 CP 破坏"或称为"间接 CP 破坏"。不久这个 CP 破坏参数就以很高的精度被 测量了。今天,此参数测量值为 $|\epsilon|=(2.228\pm0.011)$ ×10⁻³和 $\phi_{\epsilon}=(43.52\pm0.02)^{\circ}$ 。

1.2 基本现象

1964年沃伦斯坦(L. Wolfenstein)假设存在一

种"超弱相互作用", K^0 和 \bar{K}^0 之间的混合只有在奇 异数改变 $\Delta S = 2$ 时才显露, 而在 $\Delta S = 1$ 时中性 K介 子衰变的转变不会发生。

这样假定的直接结果便是 $\eta^{\circ\circ} = \eta^{+-}$,这里

$$\eta^{00} = \frac{A(\mathbf{K}_{\mathrm{L}} \to \pi^{0} \pi^{0})}{A(\mathbf{K}_{\mathrm{S}} \to \pi^{0} \pi^{0})}, \qquad (3)$$

$$\eta^{+-} = \frac{A(\mathbf{K}_{\mathrm{L}} \to \pi^{+}\pi^{-})}{A(\mathbf{K}_{\mathrm{S}} \to \pi^{+}\pi^{-})^{\circ}}$$
(4)

和超弱作用那样的假设相反,在一般的理论 下,预期CP破坏可以在任何弱衰变中存在,这就导 致一个粒子X衰变到终态f的振幅 $A(X \rightarrow f)$ 和它CP 共轭态 \bar{X} 衰变到f 的幅度 $A(\bar{X} \rightarrow \bar{f})$ 是不同的。联 系到中性K介子系统的情况,这就意味CP为奇的 组态 K_2^0 衰变到 $\pi\pi$ 终态的衰变幅度可能不为零,这 就对应了所谓"直接CP破坏"。

倘如 CPT 守恒,直接 CP 破坏可能不会导致明显的效应。但假如至少有两个振幅导致到该相同的终态,且每个幅度的相位不同,则到某一末态的直接 CP 破坏过程是可以发生的。在一个 K 介子通过两个衰变幅度衰变到 2π 介子的情况下,一个处在 I=0 的同位旋态,另一个处在 I=2 的同位旋态。由于将 I=0 和 I=2 的态映射到 $\pi^+\pi^-$ 和 $2\pi^0$ 终态的 Clebsch-Gordan 系数不同,在存在直接 CP 破坏的情况下, η^{00} 和 η^+ 就不再相等。

更精确地,

$$\eta^{+-} = \epsilon + \epsilon', \quad \eta^{00} = \epsilon - 2\epsilon', \tag{5}$$

$$\epsilon' = \frac{i}{\sqrt{2}} \operatorname{Im}\left(\frac{A_2}{A_0}\right) e^{i(\delta_2 - \delta_0)}$$
(6)

这里*A*_{0.2}和*δ*_{0.2}分别为两π介子*I*=0和*I*=2同位旋 终态的振幅和强相位。反过来也可表示为:

$$\operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right) = \frac{\left(1 - \left|\frac{\eta^{00}}{\eta^{+-}}\right|^2\right)}{6} = \frac{(1 - RR)}{6}, \quad (7)$$

式中的RR就是所谓的"双比",定义为

$$RR = \frac{\Gamma\left(\mathbf{K}_{\mathrm{L}}^{0} \to \pi^{0}\pi^{0}\right)}{\Gamma\left(\mathbf{K}_{\mathrm{S}}^{0} \to \pi^{0}\pi^{0}\right)} \middle/ \frac{\Gamma\left(\mathbf{K}_{\mathrm{L}}^{0} \to \pi^{+}\pi^{-}\right)}{\Gamma\left(\mathbf{K}_{\mathrm{S}}^{0} \to \pi^{+}\pi^{-}\right)}, \qquad (8)$$

 $\pi\pi$ 相移的测量显示 ϵ 的位相与 ϵ 的相位近似相等。

正如小林(Kobayashi)和益川(Maskawa)所指 出的,在标准模型中出现了三代弱相互作用夸克二 重态,CP破坏是可能的。夸克质量本征态和夸克 味(flavour)本征态通过这个 3×3 复幺正CKM矩阵 V_i 联系起来,该矩阵参数化为三个旋转角和一个相 位 δ 。CP破坏由 Jarlskog不变量决定,

$$J_{\rm CP} = \sin \phi_{12} \times \sin \phi_{13} \times \sin \phi_{23} \times \cos \phi_{12}$$

$$\times \cos^2 \phi_{13} \times \cos \phi_{23} \times \sin \delta,$$
 (9)

表示由幺正性条件 $V_{ij}V^{*}=0(\exists j \neq k$ 时)构成的三角 形的公共面积。指数i(j,k)在三个上(下)夸克上运 行。关键的参数是相位 δ ,它是**CP**破坏的根源。

1.3 20世纪80~90年代 *ϵ* / *ϵ* 实验测量状况

总的来说,实验精度统计上受到 η^{00} 测量的限制,因为需要探测两个 π^{0} 衰变的四个光子。20世纪 80年代早期得到的最精确的结果是: $|\eta^{00}/\eta^{+-}|$ = 1.00±0.06,这是在CERN的PS以重建45个KL⁰→ $\pi^{0}\pi^{0}$ 衰变得出的,在美国BNL的AGS上以重建约 120个KL⁰→ $\pi^{0}\pi^{0}$ 事例得到的 $|\eta^{00}/\eta^{+-}|$ =1.03±0.07以 及在BNL的AGS上在Ks⁰-KL⁰相干区域容许同时测 量 η^{00} 的数值和相位得到的 $|\eta^{00}/\eta^{+-}|$ =1.00±0.09。

20世纪80年代美国的BNL和Feimilab提出了 几个实验建议。CERN在80年代初也倡议开展了 NA31实验,该实验于1982年正式批准。NA31实 验使用了比以前更强的束流以及采用部分消去测 量的系统不确定性的方法把实验目标定于 ϵ /ϵ 测 量的总精度在千分之一左右。

在90年代初,由理论和实验现状清楚地认识 到精度为10⁻⁴的测量是需要的,这就导致新一代实 验,也即美国Fermilab的KTeV和CERN的NA48的 出现。

NA31和NA48分别被安装在450GeV的超级 质子同步加速器(Super Proton Synchrotron, SPS)束 线上的EHN1和EHN2区。

1.4 ϵ'/ϵ 测量的主要挑战

一个精密测量需要对所有四个衰变道,特别要 对被压最低的 $K^0_{L} \rightarrow 2\pi^0$ 衰变模式,具有很高的积累 统计,同时还要求有小的并可控制的系统不确定性。

统计精度可以通过用很强的质子束流轰击固 定靶产生 K_s^0 和 K_L^0 束流得以改进。这在 CERN 因 为可利用450 GeV 的 SPS 而变得可能。第二个挑战 涉及到对有兴趣事例的收集。为了构建双比, ϵ'/ϵ 的测量在于纪录 K_s^0 和 K_L^0 衰变到 $2\pi^0$ 和 $\pi^+\pi^-$ 四种模 式的事例计数。在 K_L^0 中,这类终态的计数小于总 衰变率的 0.3%。因此在 K_L^0 衰变中的 CP 破坏的衰 变道必须要在具有大量三体终态中被有效地选定, 这些三体衰变必须通过一种有效的触发和准确的 测量加以压低。

第三,虽然有严格的准直,强束流常常伴随可 以影响好事例丢失的粒子。尽管较小,但如果它们 对四个衰变模式影响不同,就会冲击双比的测量。 采用覆盖方法通过特定的软件把所谓"随机的"触 发与束流强度成比例地叠加到数据的每个事例中, 这样给出了环境影响的一个准确描绘。

最后,还需要特别注意减少系统影响,例如(在 任何可能时)同时记录四种有兴趣模式导致系统影 响的相消以及通过精心设计实验把修正的需要减 至最低程度。

2. 第一代:NA31 束流和探测器

该项目从1982年到1993年聚合到来自七个欧 洲研究所的60名物理学家。在1986年该实验执行 了第一次重要的数据采集。另一次数据采集在 1988年和1989年,这次是在为了改善统计和系统 不确定性而进行的束流和探测器升级以后开展的。

2.1 K_L[®]和K_s[®]束流

NA31合作组选择了 K⁰_s 和 K⁰_L 同轴束流交替的 数据采集,典型的周期为30小时。实验同时记录带 电和中性衰变,这样部分系统不确定性便可相消。

K⁰₁ 束流是通过 SPS 加速器提取的质子束轰击 一个放置在衰变体积上游约 120 米的远靶产生的。 构建高强度的 K⁰₁ 束需要清除带电次级产物,而对 中性成分则经过仔细的多级准直以精确界定其束 流孔径,并去除全部孔环的散射粒子。 K^o_s 束则是 把已减弱的质子束引至离衰变区很近的第二个靶 上产生。束流参数列于表1,而实验布局示意图如 图1所示。在 K^o_s束流中,防止在准直器中较早衰变 而精确决定衰变体积的起点是非常重要的。

表1 K₁⁰和K₈⁰束流参数。括号内是1986年实验 运行后所用的修改值

束流类型	${\rm K_L}^0$	K_s^{0}
束流能量(GeV)	450	450(360)
从靶到		
-确定准直器的束流长度(m)	48.0	
-最后准直器的出口(m)	120.0	7.1
最后准直器至液氩量能器距离(m)	123.8	76.7~124.7
铍靶直径/长度(mm)	2/400	2/400
产生角(mrad)	3.6(2.5)	3.6(4.5)
束流接收度(mrad)	±0.2	±0.5
每脉冲击靶质子数	1×10 ¹¹	3×107
每个脉冲产生的束流接收度内K°数	1.8×10 ⁶	3.3×10 ³
每个脉冲在束流接收度内中子数	1.5×107	3×104

图1 NA31实验布局,从左到右:K_ι°束,K_s°束,抽真空的配置 反计数器的衰变体积、簿窗、两个丝室、液氩量能器、 强子量能器和μ子否决探测器

在 K^o_s模式下,沿束流轴衰变顶点的分布在 100 GeV 时斜率约为5米的指数型。这与 K^o_L的分 布有很大的不同。为了减轻这个影响,K^o_s束流部 件安置在可在轨道上移动的支架上,即"XTGV",在 沿着50米衰变区在每隔1.2米的固定站上停留必要 的运行时间。汇总各站点的数据后,K^o_s事例全部

CERN的重要实验与发现

的顶点分布很大程度上类似于 K_L⁰ 的分布。

尽管用了这个手法,但两个束流的能谱还是不同的。为了减少这个影响,一些束流参数在1988年做了修正:轰击 K^o^a靶的质子束能量以及质子轰击 K^o_s和 K^o_t靶的入射角都进行调整,以使得在衰变体积中测量的两个能谱变得更相似,以一个显著的方式减少结果对它们差别的灵敏性。

2.2 NA31实验布局

K_s^o的 XTGV 被一个 130 m 长、直径 2.4 m 的圆 柱体围了起来,此圆柱体包含了衰变体积。为了防 止 K^o_L 到 K^o_s 的再生以及带电衰变π介子的多次散 射,此圆柱体的前面 100 m 内抽真空,并把真空度降 到 3×10⁻³托。它的下游是一个闪烁体描迹仪,液氩 电磁量能器(LAC),强子量能器(HAC)和μ子否决 计数器(veto)。所有探测器都被抽空的束流管道穿 过,而终结于束流收集器。

四个反计数器环用来否决三体衰变,闪烁计数器 描迹仪放置在LAC的前面,启动带电衰变的触发。 两种衰变模式的测量都基于量能器(电磁型和强子 型)并用丝室来重建带电粒子的衰变顶点和轨迹。

2.3 中性衰变的测量:液氩量能器

为了达到所需要的在2π[°]信号和大许多倍的3π[°] 本底之间的区别能力,需要量能器具有高水平的能 量和空间分辨。液氩电离量能器正是适用于这一 目的。它的室体由一堆铝包的铅转换板,以及与转 换板交替插入的用于信号读出印刷电路板组成。 加上液氩,它的总厚度约24辐射长度(X₀)。液氩量 能器的重要参数由表2给出。图2展示了一个3π[°] 候选事例图。

表2 液氩量能器的主要参数

Pb/Al(铅/铝)夹心板尺寸(mm)	1204×2408×2.3
读出板尺寸(mm)	1200×2400×0.8
一个单元的尺寸(mm/辐射长度)	7.3/0.3
在深度方向(前部+后部)单元数	40+40
条宽(mm)	12.5
每个象限(X-Y)单元数	96-96
电子学道数	1536

图2 一个3π[°]候选事例的展示图。在代表LAC表面的方形区域的 边界上画出的几个峰代表了在水平和垂直量能器条中沉积的能 量。重建的光子位置用字母G,表示,三个π[°]的位置用π,表示。不同 的颜色代表每个π[°]以及它们的衰变产物

量能器能量分辨率为 $7.5\%/\sqrt{(E(GeV))}$,均匀 性在±0.5%内,而线性在±0.3%之内。电子学噪声对 分辨率的影响约为 100 MeV。

电子学的校准定时进行,实验中发现台阶(pedestal)的漂移依据每小时温度测量进行修正来抵偿 这个效应。

2.4 带电模式的测量

带电粒子的方向用两个丝室测量。每个平面的效率为99.3%,空间点精度为750μm。衰变顶点 重建的纵向精度为80 cm,在处理的最近距离上的 均方根为5 mm。

HAC是一个取样设备,25 mm的铁板交替地插 入4.5 mm厚的1.3 m×0.12 m的闪烁体板形成一个 象限结构。在前(后)模块共有24(25)水平和垂直 交替的平面,总共有176道。

在最初阶段的采集数据分析之后,合作组建造 了一个穿越辐射探测器,于1988年安装在第二个丝 室和大管道的铝盖板之间,用于对 Ke3(K⁰_L→πev) 本底估计的独立交叉检查。

2.5 触发、在线本底排除和数据获取

触发和数据获取是应对探测器的记忆时间设

计的(2.1 μs,由LAC决定),探测器的单一频率约为 100 kHz,容许1 Mbyte/s的流量,这对应在 K⁰ 模式 下在每次爆发接受2000个事例,尽管采用了高拒绝 率的三级触发,但接受事例的大部分仍是三体衰变 本底。

第一级触发执行事例的快选择,或者符合两个 带电粒子事例,或者符合由描迹仪、LAC和HAC判 定的至少有两个电磁簇射事例。在第二级触发中, 一个定制的硬线(hard-wired)处理器(AFBI)用150 ns周期在两个平行数据流中处理中性和带电的条 件。约有50%(30%)的中性(带电)触发被AFBI拒 绝,而好的2π衰变事例的损失小于0.1%。同时满 足中性和带电触发的事例全部被接收。

最后,在第三级触发,被AFBI接受的事例数据 加载到一个双168E处理器的输入内存,对带电触 发做一些离线跟踪计算,在K介子质量的假设下, 考虑对Z。截断、非共面角以及能量的截断(cut)。

3. NA31分析和结果

下面的描述和数值结果主要是针对初期数据 采集阶段(1986)的。下文列表便于对不同时期的 运行进行比较。

3.1 分析

 $K^0 \rightarrow 2\pi^0 \rightarrow 4\gamma$ 衰变是由量能器测得的光子的能量和位置重建的。 K^0 介子的能量由四个光子能量 求和得到,精度约为1%。假设为K介子质量,衰 变顶点到量能器的距离将以类似的相对精度计算 得到。为了排除剩下的主要是 K^0_L 東流 $K^0 \rightarrow 3\pi^0 \rightarrow$ 6γ的衰变本底,在三个双光子对的组合加上 π^0 质量 约束⁰。最佳的双光子配对应该有最小 χ^2 ,见图3所 示。信号区的 χ^2 <9。剩余本底的估计通过从大 χ^2 区 向信号区外推得到,得到本底为(4.0±0.2)%,这里 所标的误差包括了统计和系统误差。在 K^0_s 和 K^0_L 東流中可以得到的中性事例数见表3所列。

K⁰→π⁺π⁻衰变由丝室的空间点进行重建。K⁰的 能量在假设K介子质量下由两条径迹夹角以及它 们在量能器能量比*R*算得:

$$E = \frac{1}{\theta} \sqrt{\left(2 + R + \frac{1}{R}\right) \left(m_{\rm K}^2 - m_{\pi}^2 \left(2 + R + \frac{1}{R}\right)\right)}$$
(10)

为了达到1%的分辨并把Λ衰变减少到可忽略 的水平,*R*被限制到2.5。在 K⁰_s 和 K⁰_L 样本中得到的 带电事例数见表3所列。

图3 (a) K_L⁰样本的4γ事例,在2π⁰假设下的最小χ²分布,虚方块图是对3π⁰本底的蒙特卡罗研究得出的。(b) K_L⁰束流的π⁺π 样本,对 K_L⁰靶的横 向距离分布。Ke3和K_H3本底的蒙特卡罗模拟研究得出的分布也展示在图上,而π⁺π⁻本底是由带一个额外光子的子数据样本估计得出的

28

表3 在NA31数据获取时期四个模式的积累统计,以及估 计的本底比例

衰变模式	1986年数据		1988年和1989年数据	
	事例(×1000)	本底(%)	事例(×1000)	本底(%)
$K_{L}^{0} \rightarrow \pi^{0}\pi^{0}$	109	4.0	319	2.67
$K_L^{0} \longrightarrow \pi^+ \pi^-$	295	0.6	847	0.63
$K_s^{0} \rightarrow \pi^0 \pi^0$	932	< 0.1	1322	0.07
$K_s^{0} \longrightarrow \pi^+ \pi^-$	2300	< 0.1	3241	0.03

通过 K^o_s 在带电或中性模式衰变的衰变顶点谱 与由置于不同纵向位置的 AKS 形成的模拟分布做 拟合,可以固定带电模式和中性的相对能量标度的 不确定性至±0.1%。图4(a)给出了 70~170 GeV 拟 合的插图。

3.2 NA31结果

一旦能标固定后,事例在70~170 GeV 能量划 分的10个单元格(区间)计数,在10.5~48.9 cm 顶点 位置的划分的32个单元格计数。所选的衰变范围 是为了使K介子衰变和在最后的准直器上的散射 和再生的污染最小,并限制随 Z_v增加的3π^o本底。 *RR*的结果是*RR*=0.980±0.004(统计)±0.005(系统), 得到

$$\operatorname{Re}(\epsilon'/\epsilon) = (3.3 \pm 1.1) \times 10^{-3}$$
 (11)

这是第一次观察到的达到3倍标准偏差的结果。此 结果于1988年以一个比较保守的标题"直接CP破 坏的第一个证据"发表。

系统不确定性的主要来源是与偶然损失、在带 电模式和中性模式之间能量标度的差别,以及本底 估计有关。

在第一次实验成功运行后,合作组决定进一步 改良束流和探测器,同时减少主要的系统不确定性 和统计不确定性,改进后的两个新数据采集阶段为 1988年和1989年。

实际上,用较低质子能量产生Ks⁰束流以及调 优两束流的产生角(表1)导致平坦得多的K⁰_s/K⁰_L 比的能谱,见图4(b)。这个变化把因能量标度原因 造成的系统不定性从0.3%减小到0.12%。

在带电衰变模式中,由新的穿越辐射探测器提供的信息可以对本底,主要也就Ke3衰变,做独立估计。用了这个附加的手段,在信号区减去本底方面的系统不确定性减小到0.1%(表4)。

1989年安装的ZTDC系统提供了对量能器簇团的时间测量。利用这个信息,发现偶发效应与重叠法符合得很好。与偶发活动相关的系统不确定性被减小到0.14%。

实验不同运行阶段的系统不确定性的改进详 见表4。

最终,在用了升级的探测器和束流后的1988年和1989年采集的数据得到的双比结果是 RR=

图4 (a) 在Ks[®]束流中中性模式重建的衰变顶点位置。拟合曲线对应一个经过分辨率修正后的指数分布。 (b) Ks[®]/Kt[®]比随能谱的变化,能谱分别由1986年和1988年改进过后的束流得到

表4 NA31两个数据采集阶段双比(用%为单位) 测量的系统不确定性

不确定性来源	1986年数据	1988年和1989年数据
K _L ⁰ →π ⁰ π ⁰ 本底	0.2	0.13
$K_{L}^{0} \rightarrow \pi^{+}\pi^{-}$ 本底	0.2	0.10
能量标度	0.3	0.13
偶发损失	0.2	0.14
蒙特卡罗接收度	0.1	0.10
触发和AKS效率	0.2	0.09
总系统不确定性	0.5	0.3

0.9878±0.0026(统计)±0.0030(系统)。这个 RR 值 转换到 Re(ϵ'/ϵ)=(2.0±0.7)×10⁻³。考虑到两个数据 采集阶段系统不确定性是共有的,则平均结果为

Re(*ϵ*/*ϵ*)=(2.30±0.65)×10⁻³。 (12) 这个最终结果,即为3~5倍的标准偏差下的非零结 果已于1993年11月发表。

3.3 相位测量

在 1987 年, NA31 实验组开展了一轮专门测量 相位 $\phi^{\circ\circ}$ 和 ϕ^{+-} 的实验。 在K⁰束中,约经过12τ_s之后,来自K⁰_s成分的ππ 事例率和来自CP破坏的K⁰_L成分的衰变变得可以 比较,并且可以相干。在此相干区,两π衰变率在K 介子静止系中作为时间的函数可以写为:

$$I(t) = S(p) [e^{-t/\tau_s} + |\eta^2| e^{-t/\tau_L} + 2D(p) |\eta| e^{-t/2(t/\tau_s + 1/\tau_L)}$$

$$\cos(\Delta M t - \phi)]_0$$
(13)

这里 S(p) 是 ($K^0 + \bar{K}^0$) 的 动 量 谱, 而 $D(p) = (K^0 - \bar{K}^0)/(K^0 + \bar{K}^0)$ 是稀释因子。

为了在对相干项最灵敏的10r_s和15r_s之间有一 个最优化的接受度,NA31用了改进的束流设计,在 K⁰_L净化准直器上游48m和33.6m处分别装置了 "远"和"近"两个靶站。此束流设计用了两级准直, 改良了屏蔽,容许使用每脉冲2×10¹⁰的质子流强。 采用了与展示于表1的1986年时期相同的靶尺寸、 能量以及入射角。

测得的K介子在带电和中性模式的衰变率展示于图5。

相位差的结果是通过把作为在两靶之间中点 算起的寿命函数事例率之比的一个联合拟合(带电

图5 作为寿命函数的中性(a)和带电(b)模式的衰变率。叠映在图上的是没有相干项的拟合寿命分布。 插图展现了数据中提取的相干项

CERN的重要实验与发现

的和中性的)得到的。

1990 年发表的结果: $\phi^{\circ\circ} - \phi^{+-} = (0.20 \pm 2.6(统))^{\circ}$; (0.20 ± 2.9)°, 这里主要的系统不确定性来自能量标度^②。结合 $\Delta M = M_k$ 相比极小的事实, 相位差的测量提供了 CPT守恒在±4×10⁻¹⁹的水平上的一个强有力的检验。

CP破坏与CPT守恒联系起来,则意味着T是破坏的。这种破坏已经以6倍标准偏差的置信度在 CERN的CPLear实验上观察到了,该效应在 pp 湮灭中标记的 $\overline{K}^0 \rightarrow \pi^- e^+ v \rightarrow K^0 \rightarrow \pi^+ e^- \bar{v}$ 事例率的比较中得出。这一观察意味了 $K^0 \rightarrow \overline{K}^0 \rightarrow \overline{K}^0 \rightarrow K^0$ 的转变幅度不是完全一样的,显示了T对称性的破坏。

4. 第二代:NA48 束流和探测器

NA48实验的目标是把 ϵ'/ϵ 的测量精度定在万 分之几。十个新的欧洲研究所效力于这个新合作 组,其中的六个来自 NA31团体。 ϵ'/ϵ 测量数据是 在 1997年,1998年至 1999年以及 2001年的三个时 间段记录的。在 2000年,该实验还安排了一期专门 运行来研究如何改良对特殊系统性影响的控制。 合作组把注意力集中在比 NA31更好的系统不确定 性相消的方法,为此,他们决定在相同时间、相同衰 变体积收集全部四种衰变模式事例。为了做到这 一点,衰变体积从 K^o_s确定准直器的末端算起缩短 至 3.5τ_s。

 K_{L}^{0} 和 K_{s}^{0} 衰变之间接收度的差别通过对每个 K_{L}^{0} 事例用它的本征时间的一个函数加权而减到最 小,所以 K_{s}^{0} 和 K_{L}^{0} 衰变谱变得几乎完全相同。与 NA31不同,NA48用了磁谱仪以更高的精度来测量 带电衰变。一个高粒度(with high granularity)的准 均匀液氪量能器对中性衰变提供了精确的位置、能 量和时间信息。图6给出了NA48的束流线和探测 器的示意图。

4.1 NA48 束流

NA48的 K⁰_L 束流是用一个比NA31 强度大十倍的450 GeV 质子流以低于 2.4 毫弧角度轰击铍靶

图6 NA48 束流(a)和探测器(b)

产生。那些在 K⁰ 靶没有发生相互作用的质子轰击 一个硅单晶(Silicon mono-crystal),该晶体平行于 (110)晶面,其尺寸为(60,18,1.5)mm³, K⁰, 束流就 来自这些质子。晶体是弯曲的并被安在一个机动 测角器上,可以准确定位,沿晶面选择、偏转和操纵 3×10⁷ ppp(ppp:每脉冲原始质子数)的质子束流(图 7(a))。弯曲晶体的传播特性以很确定的发射度产 生干净束流,并在6cm短长度上用相当于14.4T·m 弯曲力把该束流偏转到所希望的方向上去,并且不 需要用一个很重的准直器系统就能把原质子数降 到2×10⁻⁵一小部分。被传输的质子束穿过精确记录 每个质子通过时间的标记系统,然后经过一系列的 偏转磁体被送到放置在离有效衰变区起端6m并比 K_1° 束流轴高出 72 mm 的 K_s° 靶。 K_s° 束在最终准直 器孔穿过一个用来精确决定有效区起端的反-计数 器(anti-counter),这和NA31实验是一样的。 K⁰,束 流的方向被调节,在下游120m主探测器的入口处 与KL⁰束流重叠。K⁰_s束和K⁰_L束在一个很大的真空

图7 (a)弯曲晶体示意图。(b)标记探测器示意图

箱内的真空区传输,真空箱的末端通过一个聚酰胺 (Kevlar)簿窗与探测器分隔。

4.2 标记器

放置在被弯曲晶体所选的质子束流路径上的标记探测器由24个闪烁体组成,安装在一个碳纤维结构上,这些闪烁体在水平和垂直方向上交替并错列放置,不同的计数器之间记录了束流轮廓,见图7(a)。

4.3 液氪量能器

液氪量能器约由 40 μm×18 mm×125 cm 的铜-铍-钴(Cu-Be-Co)条界定的13 000个2 cm×2 cm 截 面的单元组成,这些单元形成了指向衰变区中心的 纵向投影塔并浸在一个灌满约10 m³液氪缸内。每 个单元是由两个阴极和一个中心阳极组成。液氪 被用作工作介质是因为它的辐射长度(4.7 cm)短到 容许做成一个仍然支付得起的紧凑的各向同性量 能器。电离信号固有的稳定性以及较小的莫里哀 (Moliere)半径保证了有紧凑的横向簇射大小,这也 是个有利品质。

能量和时间用数字过滤方法重建,运用最大值 附近的三个取样。簇团由环绕最大能量的3×3单 元形成。能量沉积的重心用来估计簇团的位置,而 最大能量单元的时间被考虑为该簇团的时间。使 用Ke3衰变的单元内部校准后 *E/p*比研究得到的能 量分辨为3.2%/、*E*(GeV),其余来自电子学噪声90 MeV以及0.42%的常数项。能量响应在5 GeV和100 GeV范围测得的线性在0.1%之内。位置分辨在两个方向上都好于1 mm,时间分辨是500 ps。

4.4 谱仪

带电衰变通过一个闪烁体描迹仪触发。径迹从 四个八角状的丝室(DCH)测得的击中(hit)重建,对 电子束径迹动量的重建测得的分辨率为σ(*p*)/*p* = 0.48%⊕0.009×*p*%,(*p*用GeV/*c*单位),式中的第一 项源于DCH室和周围氦气中的多次散射,第二项 源自丝室击中的位置测量精度。重建的K介子的 质量分辨为2.5 MeV/*c*²。对双径迹事例,衰变顶点 是由上游两个丝室测得的击中计算得到,纵向(横 向)分辨为50 cm(2 mm)以及在接近的最短距离上 有7 mm的散开。

4.5 NA48触发和数据获取系统

NA48 触发的目标是把粒子对探测器的 500 kHz击中率减少到几个 kHz 的可接收的事例率,并 要求具有最小失效和死时间。第一级流水线带电 触发就是基于描迹仪的信号,丝室的击中多重性以 及电磁量能器的能量阈。第二级触发计算了径迹 坐标,本征衰变时间,以及用第一、第二和第四个丝 室击中位置计算到的不变质量。

一个流水线型设计也用于中性触发。每25 ns 利用同时在水平和垂直两个投影、水平投影以及垂 直投影的2×8量能器单元的模拟和,来估算K介子 能量、光子数、它们到达的时间以及本征衰变时间。

来自各子探测器的触发决定由触发管理系统 进行整合。事例碎片在就地的PC工场建立成完整 的事例,通过一个千兆bit的光缆以10 MB/s的速度 被传输到CERN的计算中心。在那里,原始数据被 储存到光盘上,并且平行地在一个离线PC工场上 被监控、重建和进一步选择。

4.6 NA48分析

这一节描述了1998年到1999年,统计上最正 规的数据期间的分析。连同所有取数阶段的最终 结果将在本文的结尾部分给出。

4.6.1 中性衰变

选择彼此能很好分开且在 3~100 GeV 能量范 围的簇团。4-簇团时间是用在每个簇团的两个最 大能量单元的能量加权平均计算得到。每个簇团 时间必须与平均时间在 5 ns 范围内相容。纵向顶 点位置利用假设为一个 K介子衰变的四簇团的能 量和位置算得。 m_{rr} 值由光子的两两组合并结合 χ^2 鉴别器计算得到。利用三个可能的配对,把具有最 小 χ^2 那个配对留下。在 2 π^0 衰变道的主要本底来自 没有被识别的 K⁰_L \rightarrow 3 π^0 ,当未探测到的光子或者光 子合并,结果使得 K⁰_L \rightarrow 3 π^0 仅有四个簇团造成本 底。本底在定义 36< χ^2 <135 的控制区进行了研究, 并在定义为 χ^2 <13.5 的信号区的每个能量区间把本 底去除(见图8(a))。

能量标度通过重建 K⁰_s→2π⁰候选者的顶点分 布的上游边缘与AKS 计数器位置比较而被校正。 附加的检查则在用π⁰和η衰变到两光子的事例进 行,合作组安排了专门的实验用π⁻束流轰击放置在 不同但已知位置的靶以产生π⁰和η介子。

4.6.2 带电衰变

利用击中以及漂移时间信息来重建径迹。要求 这些径迹必须来自一个公共的顶点,动量必须大于 10 GeV,并且必须与每个 DCH 的中心相距至少 12 cm。这些径迹必须在 LKr 和µ子否决器的接受度之 内容许进行正常的粒子识别。重建的 K 介子能量是 由两条径迹的动量比以及它们相对张角*θ*计算得到。

三体衰变是 K_L^0 样本的主要本底。Ke3 衰变通 过对两条径迹都采用 E/p比的检验加以排除。把在 合理时间(in-time)击中µ子否决器的事例去除以压 低 Kµ3 本底。进一步压低这两个模式可以用两条 径迹的不变质量与 K介子质量的比较而实现。最终 的识别则采用了与顶点分辨独立重建的丢失横动 量 P_T^2 ,图 8(b)展示了 P_T^2 分布。信号区被定义为 P_T^2 < 0.0002(GeV/c)²。尾巴是由剩余的 Ke3 和 Kµ3 事例 填充的,这已分别被丰富的 Ke3 和 Kµ3 样本证实。

4.6.3 修正:标记失效和稀释

 K_s^0 和 K_L^0 数据的分选基于标记器与Lkr(对中

图8 (a) 衰变到 $2\pi^{\circ}$ 的 K_{ι}° 和 K_{s}° 事例的 χ^{2} 分布。信号和控制区已在图中标明。(b) 带电衰变以及所有各种贡献的 P_{τ}^{z} 分布

性衰变)和带电描迹仪(对带电衰变)的时间符合。

当标记器信号同时用于带电和中性衰变时,与 它的时间测量有关的不确定性是对称的。两个弄 错的结果仍然是:

第一类弄错发生于因为重建探测器时间落在 符合窗口外,则把一个 K_s^0 事例标记为 K_L^0 。研究发 现总的失效几率 a_{sL} 对带电和中性衰变是相同的,不 确定性为 ±0.5×10⁻⁴,见图 9(a)。

第二类用a_{Ls}表示,是把 K⁰_L 事例赋于 K⁰_s 样本的 情况,这是由于与标记器发生了一个偶然符合。测 得的值为 $\Delta \alpha_{LS} = \alpha_{LS}^{00} - \alpha_{LS}^{+-} = (4.3 \pm 1.4(统计) \pm 1.0(系 统)) \times 10^{-4}$ 。

4.6.4 修正: 束流活动、散射和接收度

大多数的偶然活动都起源于高强度的 K₁⁰ 束。 同时收集四种模式可把此效应对结果的灵敏性降 到最小。净(收益损失)测得的效应,带电模式比中 性模式的大(1.4±0.7)%(图 10(a))。由偶发效应对 双比中影响是Δ*RR*=±4.2×10⁻⁴。

散射 K 介子作为对带电事例和中性事例重心 半径分布的尾巴出现。对 K₁^o这些尾巴是被遭受双

图9 (a) 具有 K_s⁰和 K_i⁰带电衰变标记的时间符合,这些事例是通过重建顶点的垂直位置被识别确认的。±2 ns的标记窗也被画出了。(b) 2001 年取数阶段在持续的时间中Δα_is随时间变化。测得的形状与由重叠方法得出的预期吻合良好。在爆发开始时,瞬时强度就会很高,观察到的 影响就很大,见图9(b)

图10 (a)估算的对带电衰变和中性衰变净的偶发效应。(b)蒙特卡罗在为K_°事例加权和未加权两种情况下的接收度修正

散射事例所支配,对于两种衰变模式由损失不同而 引起的修正为-(9.6±2.0)×10⁻⁴。

尽管两种束流朝着 LKr 中心会聚,并且为测量 采用了较短的公共衰变区, K⁰_L和 K⁰_s寿命的不同隐 含在双比上一个大的接收度修正,这正如图 10 右所 示。为了抵消此修正的大部分,一个作为 K⁰本征 时间函数(非常类似于两种束流的衰变谱)的加权 因子加给每个 K⁰_L事例。把蒙特卡罗的修正减少到 (26.7±4.1(统计)±4.0(系统))×10⁻⁴,而这是以增加 统计不确定性为代价的。

4.7 NA48结果

结果是由K介子在70~170 GeV能量区域20个 单元格中进行计算。在每个单元格中双比值用Ks°以 及本征时间加权的K⁰带电和中性衰变数,并把对 每个单元格估计的各种修正加上后被估算得到。 表5展示了在1998年至1999年期间的实验结果中 的各种修正对原初双比测量的影响及其不确定性。

表5 1998年~1999年数据样本在双比测量结果的 修正及其系统不确定性

	10 ⁻⁴ (单位)
π⁺π⁻触发失效	-3.6 ± 5.2
AKS 失效	$+1.1\pm0.4$
重建和°和°	0±5.8
重建π⁺π⁻	+2.0±2.8
本底π°π°	-5.9 ± 2.0
本底π⁺π⁻	+16.9±3.0
束流散射	-9.6 ± 2.0
偶发标记	+8.3±3.4
标记失效	0±3.0
接收度	$+26.6\pm4.1\pm4.0$
偶发活动	$0{\pm}4.4$
Ks ⁰ /KL ⁰ 的长期变化	0±0.6
总计	35.9±12.6

最终的双比是用一种对数估计方法对20个数 值的平均得出的。

三个实验阶段的全部NA48数据统计以及结果 由表6给出。实验组合的最终结果是(14.7±2.2)× 10⁻⁴,确认了直接CP破坏的观察已经达到6.6标准 表 6 三个数据采集阶段本底扣除以及对误标修正后所选事 例数。所给的 Κ.⁰统计没有做寿命加权。所给的相应的 *ϵ* /*ϵ* 结果同时标出了它们的不确定性

	1997	1998+1999	2001	组合
$K_{_L} \rightarrow \pi^{_0}\pi^{_0} \bigstar(\times 1000)$	489	3 290	1 546	5 325
$K_s \rightarrow \pi^0 \pi^0 $ $(\times 1000)$	975	5 209	2 159	8 343
$\mathrm{K_L} \! \rightarrow \! \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \bigstar(\times 1000)$	1 071	14 453	7 136	22 660
$\mathrm{K}_{\mathrm{s}} \rightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \bigstar (\times 1000)$	2 087	22 221	9 605	33 913
$\epsilon'/\epsilon(\times 10^{-4})$	18.5	15.0	13.7	14.7
统计误差(×10 ⁻⁴)	4.5	1.7	2.5	1.4
系统误差(×10 ⁻⁴)	5.8	2.1	1.9	1.7
总误差(×10⁻⁴)	7.3	2.7	3.1	2.2

偏差的置信度。

Fermilab的 KTeV 实验 2011 年发表了他们的结果,给出组合结果 $\epsilon'/\epsilon = (19.2\pm 2.1) \times 10^{-4}$,与NA31 和NA48两者的结果都符合得较好。

5. 结束评论

5.1 ϵ'/ϵ 的世界平均值

CERN和Fermilab实验结果的比较如图 11 所示。被粒子数据组(Particle Data Group)计算的世界平均值为(16.8±2.0)×10⁻⁴,这里引用的误差放大了 1.4倍,这是考虑到结果的离散性。在K介子系统中CP破坏幅度中一个直接分量的存在已在实验上以 8.4倍标准偏差的置信水平上确立了。

用公式(3)~(8),这个基本值也可表示为:

$$\frac{\Gamma(\mathbf{K}^{0} \to \pi^{+}\pi^{-}) - \Gamma(\overline{\mathbf{K}}^{0} \to \pi^{+}\pi^{-})}{\Gamma(\mathbf{K}^{0} \to \pi^{+}\pi^{-}) + \Gamma(\overline{\mathbf{K}}^{0} \to \pi^{+}\pi^{-})} = 2 \operatorname{Re} \epsilon' = (5.3 \pm 0.6) \times 10^{-6},$$
$$\frac{\Gamma(\mathbf{K}^{0} \to \pi^{0}\pi^{0}) - \Gamma(\overline{\mathbf{K}}^{0} \to \pi^{0}\pi^{0})}{\Gamma(\mathbf{K}^{0} \to \pi^{0}\pi^{0}) + \Gamma(\overline{\mathbf{K}}^{0} \to \pi^{0}\pi^{0})} = -4 \operatorname{Re} \epsilon' = (-10.6 \pm 1.2) \times 10^{-6}$$

说明了直接CP破坏的发生。

5.2 K介子中的CP破坏:重介子系统的 入口

自从1964年的一个意想不到的发现,CP破坏

氏英文字母顺序排列),第二个数字是所引文献发表的时间,第3个词是实验组的名称,第四个数在图中表示√值。例如第二行表示此结果参考了KTEV的ABOUZAID的2011年发表的结果。在PDG 上可以追踪这些文献)

在实验方面开启了一个新的领域并且已在更重的 介子系统被寻找。D°D°和B°B°提供了丰富的现 象,过去20年中已在正负电子对撞机(CESR,LEP, PEP-2,KEK-B)以及正负质子对撞机(Tevatron, LHC)专用实验开展研究。由于这些介子质量更 高,许多终态是容许的,所以这"重的"和"轻的"质 量本征态的衰变宽度与在K介子系统相比要接近 得多。

在 D 介子系统中,由于混合的振荡近来被观察 到了,得到 $x=(0.41\pm0.14)$ %和 $y=(0.63\pm0.07)$ %,这里 $x=\Delta M/\Gamma$ 和 $y=\Delta\Gamma/\Gamma$, ΔM 和 $\Delta\Gamma$ 为两个质量本征 态的质量和衰变宽度差,而 $\bar{\Gamma}$ 为平均衰变宽度。没 有 CP 破坏被发现,与标准模型的预期相一致。

B[°]B[°]系统的现象学要丰富得多。对 B_a[°], x= 0.774±0.006 而 y,被标准模型预期是非常小的,实验 上与零相容。CP 破坏最早是被 Babar 和 Belle 在混 合和衰变幅度之间发生相干的 ψ K_s 终态观察到的。 直接 CP 破坏已在几个终态中观察到了。例如,在 B⁰→K⁺π⁻和B⁰→K⁻π⁺之间的不对称性首先被 LHCb实验测量到了,测得的不对称性值为-0.082± 0.013,与在K介子系统的直接CP破坏大相悬殊。

对 B_s^o则花了很长时间才观察到振荡现象,因 为 ΔM_s 比 Γ_s 大,结果以非常短的波长振荡,而这已 经超越了早期顶点探测器的能力。最早的观察是 由 CDF 做出的。今天此现象已经被很好地确定了, 测得 x_s = 26.85 ± 0.13 , y_s = 0.137 ± 0.012 。在 B^o_s B^o_s 系统的 CP 破坏也已经被很好地建立了。

在稀有衰变方面, B_s→μμ 不久以前也被观察 到了,这算是向前进了一步,最近测得衰变率(2.9± 0.7)×10⁻⁹,这可以与精确的标准模型预言相比较。 随着数据的增加,这个衰变将对新物理变得灵敏。

5.3 K介子的CP破坏:理论的入口

CP破坏的观察激起了理论的宏大想法。CKM 机制和标准模型主要也是受到了此发现的启迪。 此对称性的不守恒现象如今已在强子的弱衰变中 被确立,可以通过CKM矩阵元的参数化来描述。 1967年萨哈罗夫(Sakharov)证明了CP破坏是重子 产生过程的三个必要条件之一。把观察CP破坏与 萨哈罗夫的条件联系起来是件很吸引人的事,但与 此同时,通常认为这个破坏量相对于应起的那个作 用而言是太小了。但是CP破坏的来源可能不限于 CKM矩阵,这也是可能的。如果存在希格斯玻色 子多重态,以它们为媒介的过程可能会出现CP破 坏;在K介子系统中的ϵ值不管怎样已对这种可能 性给了很强的限制。最后,在中微子领域CP破坏 同样是可能的,特别值得强调的是,sin²2θ₁₃如今已 成为已知量,精度很高,其值为约0.09。

5.4 CERN K介子实验的遗产

CERN实验在发现直接CP破坏成分的过程中 扮演了主要角色,尽管与Fermilab的竞争是必不可 少的。NA31和NA48两者都不断地改良束流、探测 器和分析方法以更好地控制系统不确定性。在寻 求精确测量的过程中,这两个组拓展了最初的工具 和方法,这些新的工具和方法目前仍在广泛使用: 计算偶然效应的覆盖程序,量能器信号的快和精确 读出的多重取样,使用在线和离线计算机工厂(PC Farm),远程数据控制,把晶体通道效应用于束流选 择和传输等等。

与 ϵ'/ϵ 数据的采集同时,NA31和NA48两者都 开展了广泛的稀有 K 介子衰变的研究,完成了最初 的测量并首先观察到了几个稀有衰变道。

这些实验对世界物理宝库的贡献已被授予著 名的奖项,尤其授予了NA31,他们第一次观察到直 接CP破坏成分,并在1988年发表了论文。

今天, *ϵ*'/*ϵ* 理论预言仍然是不满意的,不能有效 地与这些测量相比较。希望更精确的预言能够来 自基于正在进行的格点QCD计算。

在此期间,其他的K介子衰变道正被用来进一步推动标准模型的极限。NA48/2合作组在2003年至2004年期间已经积累了约4×10°的K[±] $\rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ 和约10°的K[±] $\rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ 衰变,用来研究这些终态的达利兹图(Dalitz plot),在这些终态中,直接CP破坏可能引发一种不对称。由该实验得到的零结果是与标准模型预期一致的。

甚至更有趣的将是研究非常稀有的衰变 K⁰→ $\pi^{0}v\bar{v}$,此衰变尚未被观察到,计算得到的分支比值 为(2.4±0.1)×10⁻¹¹,加之难以捉摸的终态提升了极 端的实验挑战。不管怎样,标准模型预言的精确性 对一个专用实验而言是个强烈的诱因。在过去曾提 过几个建议;但仅存活的一个是在 JPARC 的 E14建 议。同样理论上也非常清楚的,但不在 CP 破坏过 程中占主要地位的,即衰变率约为10⁻¹⁰的 K⁺→ $\pi^{+}v\bar{v}$ 模式。同样实验上有挑战,这一衰变道容许精确测 量 CKM 参量 $|V_{ul}|$ 。一个安装在 SPS 的 EHN2 区的 专用实验NA62已在 2014年进行了第一轮实验并预 期在两年中收集 80 个 K⁺→ $\pi^{+}v\bar{v}$ 衰变。这两个非常 稀有的衰变道的结果可能对幺正三角形做独立和 精确的测定,同时探测超越标准模型的物理图像。

摘译自 60 Years of CERN Experiments and Discoveries 中L.Iconomidou-Fayard and D.Fournier 所著的 The Discovery of Direct CP Violation。希望了解更多细节的读者也可参考中译本《欧洲核子研究 中心(CERN) 60年的实验与发现》(科学出版社出版)的相应章节。

科苑快讯

新软件帮你学会更受人信赖的说话方式

人们可以通过你的声音知道很多事情——你的情绪、你的家乡,甚至你到底是敌是友。现在,一 个法国研究组发现哪些声音语调可以使人听起来 更可信或能干,利用新的计算机程序能够改变我们 的音高模式。

研究人员首先建立自己的声音处理软件,他们 利用该软件创建了数百个法语"bonjour"(法语中的 "你好")一词录音的男性女性随机音调。然后,他 们要求两组约20名志愿者每人收听700对录音,利 用他们的回答重建听起来既可信又能干的最优音高模式。

研究组发现听众清楚地将特殊语调与每种社 会性特质联想起来,而不在乎自己或说话者的性 别,研究组在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences)上做了报告。

(高凌云编译自 2018 年 3 月 20 日 www.sciencemag.org)

①分辨约为2 MeV。

②此结果现在已被KTeV所取代, φ[∞]-φ⁺⁻=(0.29±0.31)°。