希格斯玻色子在 LHC 上的发现

陈国明 摘译 (中国科学院高能物理研究所100049)

1. 引言

苹果成熟以后会掉到地面上,而不会四处乱飞, 是因为苹果和地球间存在引力。引力的起因是质量。 现在要问质量从何而来?

我们知道任何物体都是由分子构成,分子由原子 构成,原子由原子核和电子构成,而原子核由质子和 中子构成,质子和中子都由夸克组成。夸克和电子到 现在为止没有发现有更深层次的结构,因此被称为基 本粒子。实验证明质子、中子和电子都具有质量,我 们推断组成物体的基本粒子有质量,所以物体就有了 质量。能否进一步问,为什么基本粒子有质量?

粒子物理标准模型 (SM) 描述基本粒子的相互作 用规律。在过去的半个多世纪中,标准模型是物理学 中令人瞩目的杰出成就。它对粒子物理描述和预测的 能力已经被从低能到高能的许多实验,以前所未有的 精度所证实。这个模型中有一个自发对称破缺机制, 即布劳特-昂格勒-希格斯机制(BEH),根据这个机制, 宇宙中存在一个标量场,赋予传递弱相互作用的传播 子W和Z很大的质量。夸克和轻子各有6种,它们 通过与这个标量场间的相互作用而获得同它们与标量 场耦合强度成正比的质量,而电子则是轻子的一种。 这个标量场需要引进一个额外的有质量的标量玻色子 作为它的场量子,即希格斯玻色子。因此根据标准模 型,希格斯粒子是质量之源。

在 20 世纪 80 年代早期发现 W 和 Z 玻色子之后, 寻找作为标准模型重点的希格斯粒子,就成为粒子物 理的主要任务,这也是建造大型强子对撞机的初衷。 发现希格斯玻色子就能证实 BEH 场的真实存在,从 而构成认识自然的关键一环。

探测希格斯玻色子的要求在大型强子对撞机 (LHC)和探测器设计中发挥着关键性作用。标准模型 理论并没有准确预言希格斯粒子质量的大小,大型正 负电子对撞机 (LEP) 实验已经排除了 114GeV 以下的 希格斯粒子。从顶夸克质量和W玻色子的质量测量 结果来看,如果标准模型是自洽的话,希格斯粒子质 量应该小于 200GeV。LHC 是质子与质子的对撞,一 般来说对撞能量越高,能够发现的新粒子质量越大。 LHC 决定使用原 LEP 27km 长的隧道。受隧道长度和 迫使质子转弯的磁场强度限制,LHC 设计的对撞能量 为14TeV,这样1TeV以下的希格斯粒子如果存在, 都有可能被发现。要真正发现希格斯粒子需要在实验 中看到足够多的希格斯事例。如果用 N 代表看到的希 格斯事例数,则 N=σLT,其中σ表示对撞中产生希格 斯的几率,用截面表示,单位是 cm²,与对撞能量和 希格斯本身质量有关。比如对撞能量14TeV,希格 斯质量是 120GeV 时,希格斯的产生截面是 10^{-35} cm². L是瞬时亮度,单位是 N/cm^2s ,T则是加速器运行时间,单位是 s。要在比较短的时间内发现希格斯粒子,对 撞机的瞬时亮度要尽量的高。受技术的限制,LHC 的瞬时亮度设计值为 10³⁴/cm²s。

LHC 被认为是真正的"技术奇迹"。在 LHC 中, 质子被超导射频腔所加速并且运行在强大超导偶极磁 铁控制的圆形轨道中。超导二极磁铁产生 8.3T 的磁场 强度并被超流态氦冷却到低于星际空间温度的 1.9K。 LHC 相向而行的两条束流包含 2808 个束团,每个束 团包含 >10¹¹ 个质子,束团(时间)间距为 25ns,束团 对撞频率约 40MHz。

探测希格斯粒子对探测器设计的要求是能够区 分本底,并能精确测量希格斯粒子的质量。前面说 过希格斯质量是120GeV时,希格斯的产生截面是 10⁻³⁵ cm². 但是本底的截面却高达 10⁻²⁵ cm², 要大 10 个量 级。这就好比要在一大堆沙子里找出几颗有点特别 的沙子,非常困难。希格斯产生以后马上就会衰变。 在低质量区间(114 < m_H < 150GeV),两个清晰发现 道是希格斯玻色子衰变到双光子或者两个 Z 玻色子的 末态, Z 衰变成 e^+e^- 或 $\mu^+\mu^-$ 。这里的 e 代表电子, μ 代表缪子,也是轻子的一种。要求探测器能够高效地 识别光子, 电子和缪子, 并能精确测量这些粒子的能 量。在高质量区域,希格斯主要衰变成两个W,W衰 变成轻子和中微子。由于中微子与所有物质的相互作 用截面很小,因此会逃脱探测器的探测,变成丢失的 能量,因此需要探测器对喷注和丢失横动量(Ermiss)的 良好的探测能力和近乎 4π 的空间覆盖。喷注是由一 堆强子沿几乎相同的方向高速运动而形成的。质子质 子对撞会产生胶子与夸克,它们不能自由跑出来,而 是碎裂成一堆强子,形成喷注。关于探测器的具体设 计在下文中介绍。

2. ATLAS 和 CMS 实验

为了实现雄心勃勃的物理目标,新奇的探测器技 术被研发出来,而大多数已有的技术也几乎被使用到 极限。曾提出过几套探测器概念设计,最终两个互补 的探测器:超环面仪器 (ATLAS)和紧凑μ子螺旋谱仪 (CMS)被LHC实验委员会(LHCC)确定为通用探测器。 总体上说 ATLAS 和 CMS 探测器都像一个横倒的啤酒 桶,其内部结构则像洋葱,中心就是束流管,质子和 质子在探测器的中心对撞,对撞产物喷发而出,穿过 一层层的探测器,被探测器记录下来。

2.1 ATLAS 探测器

ATLAS 探测器的设计如图一(上图)所示,是一 个创新的具有挑战性的超导空气芯环形磁铁系统,在 八个分立的桶部线圈(每一个都是25×5m²"跑道"形 状的)和两个匹配的端盖环状系统中包含80km长的 超导电缆。0.5T的磁场覆盖很大的空间区域。环形磁 体辅以细螺线管(2.4m直径,5.3m长)在中心区域提 供了一个轴向 2T 的磁场。

探测器包括电磁量能器,其外辅以全覆盖的强 子量能器,用于测量喷注和丢失横动量。电磁量能 器是一种采用"手风琴"几何形状的低温液体氩-铅采样的新型量能器,具有精细的横向和深度粒度, 并实现充分的空间覆盖,没有任何的死区。塑料闪 烁体-铁取样强子量能器也具有创新型几何结构, 用于实验的桶部区域测量。液氩强子量能器用在接 近束流的端盖区域。电磁量能器和强子量能器大约 有 20 万和 2 万个基本单元,并处在环形磁体和螺线 管之间的几乎无磁场的区域,提供了优良的横向和 纵向分辨。

所有带电粒子的重建,包括径迹顶点,都是在内 部探测器上实现的,它结合了高颗粒像素探测器(每 个单元 50×400μm²,共8000万个通道)和硅微条半 导体探测器(每个单元13cm×80μm,共600万个通 道)放置在靠近束流轴的位置上,和一个"稻草管" 气体探测器(350000个通道),它为每条径迹提供了 30 到 40 个信号击中。后者也利用穿越辐射探测器信 息帮助进行电子识别。

2.2 CMS 探测器

CMS 探测器的设计基于超导高磁场螺线管 (如图 1下所示),在 2006 年首次实现 4T 的设计磁场强度。

螺线管在平行于 LHC 束流方向上产生均匀的磁 场。通过使 20kA 电流穿过一个四层设计的加强型 Nb-Ti 超导线圈来产生磁场。CMS 探测器设计的首 要任务是保证对不同动量µ子的鉴定、触发以及测量。 例如, H → ZZ → 4µ 中的µ子。为此,内部径迹探 测器和量能器的周围均覆盖约 1.5m 至 2m 的铁吸收 介质,来阻止除µ子和中微子之外所有对撞产生的 粒子。µ子在磁场中产生螺旋型轨迹,在约 3000m² 的气室轭铁交替空间被鉴别重建。另一个约 500m² 的快速室被用于提供 Level-1 µ子触发器的探测器第 二系统。

另一个探测器设计的重要目标是标准模型中希格 斯玻色子到双光子末态的探寻。该研究对电磁量能器 的能量分辨率要求极高。在设计中一种新型晶体被选 用:钨酸铅 (PbWO4) 闪烁晶体。五年对晶体透明度和

图 1

辐射硬度的研究和探索,以及十年(1998年至2008年) 日以继夜的生产,最终完成75848块晶体,构建了目 前世界上最大的晶体量能器。

带电粒子径迹的测量是对每条带电径迹,挑选 一小部分精确位置测量点(约13个位置分辨率为约 15μm的点),他们分布在一个长5.8m直径为2.5m的 圆柱体内:6600万个100×150μm²的硅像素体和930 万个约10cm×80μm至约20cm×180μm的硅微条。整 个CMS径迹系统包含198m²的硅区域,是目前最大 的硅径迹系统。

强子量能器是基于约 5cm 的黄铜吸收板和约 4mm 的用于采集能量的闪烁板构造,包括约 3000 个小立体 角投影塔,覆盖了几乎整个空间。光电探测器(混合型 光电二极管)可在强磁场中运行并检测闪烁光。

3. 检验探测器的正确性

在 LHC 上精确测量标准模型已知的粒子是发现 希格斯粒子的第一步,这就要重新测量已知粒子,看 它们的质量是否与以往测量的质量值一致。

对于长寿命粒子我们可以通过测量其动量和速度 来确定质量,但对于短寿命粒子,比如那些在对撞点 产生,还没跑出束流管就衰变的粒子,怎么测量它的 质量?根据爱因斯坦, $E^2=m^2+p^2$ (使用自然单位制, c=1), $m^2=E^2-p^2$,m被称为不变质量,在反应前后不变。 比如Z玻色子衰变成两个µ子,反应前m就是Z的 静止质量,反应后 $m=\sqrt{(E_1+E_2)^2-(p_1+p_2)^2}$,被称为两个µ 子的不变质量。我们可以通过测量衰变产物的不变质 量来测量Z的质量。

图 2 是 CMS 实验测量双 µ 子的不变质量谱。该 质量谱在 LHC 高能量对撞后仅仅几个月后就做出来, 它包括了很多能衰变到两 µ 子的粒子,有效总结了过 去几十年高能物理的发展,而且其精度非常高。与世 界公认的质量值是一致的。从图中看出,每个粒子的 不变质量分布都有一定宽度。这个宽度来自两个因素, 一个是内禀宽度,粒子的寿命越短,宽度越大。另一 个因素是探测器的测量误差。

4. 希格斯粒子发现以及性质测量

标准模型的希格斯粒子是一个特殊的粒子,它 有独特的自旋宇称 J^e=0⁺,它也是一个无所不在的基 本的标量场,与其他基本粒子相互作用,其相互作 用强度与其他基本粒子的质量相关。标准模型理论 并没有预测希格斯粒子的质量,然而一旦我们知道 希格斯粒子的质量,它的其他性质就能精确的估计 出来。希格斯粒子的寿命很短(10⁻²³秒)。因此,高 能物理实验只会探测到其衰变产物。希格斯粒子衰

图 2 CMS 实验测量双缪子的不变质量谱

变末态的分支比随着希格斯粒子质量变化的曲线如 图 3 所示。

举例来说,如果希格斯的质量是 120GeV,那么 如图所示,最大的可能是衰变到正反 b 夸克。前面说 过,夸克不能自由跑出来,会碎裂成两个喷注。这个 道的困难之处在于我们不知道我们看到的两个喷注是 对撞直接产生,还是先产生希格斯再衰变成两个喷注, 而那些直接产生的几率要高出 10 个量级。由于喷注 的复杂性,我们也不能精确测量两个喷注的不变质量。 因此这个道困难很大。

其次是衰变到 WW,W 能衰变到夸克对,也能 衰变到轻子加中微子。如果利用夸克的衰变,最后又 是喷注,不好办。如果利用轻子加中微子的衰变,分 支比小,比如 W 衰变到 µ 子加 µ 子中微子,分支比 是 10%,还有,中微子直接跑出探测器,无法测量其 能动量,因此 W 的能动量也无法全部测量,导致两 W 的不变质量无法准确测量,因此也难,但比两个 b 夸克容易一些。

双胶子 (gg) 和两个 c 夸克末态,结果也是两个 喷注,分支比还比两个 b 低一个量级,因此就更困 难了。两个陶轻子 (ττ)比两个 W 还难。最容易的是 希格斯衰变到 ZZ,Z 衰变到电子对或者 μ子对,由 于电子和 μ子能准确识别,并能精确测量其能动量, 从而可以精确重建两个 Z 的不变质量。缺点是产量 很低,因为 Z 衰变到电子或者 μ子的分支比都只有 3%。其次是两光子道。光子的方向和能量能够精确 测量,所以可以精确测量两个光子的不变质量。困 难之处在于光子容易跟一种叫 π⁰的强子混淆,并

图 3 希格斯粒子衰变末态的分支比随着希格斯粒子质量变化的曲线

且,产量也低,希格斯到两个的光子的分支比只有 0.2%。

4.1 希格斯粒子的发现

在 2011 年, ATLAS 与 CMS 实验在 7TeV 的对撞 能量上对应积分亮度约 5fb⁻¹ 分别收集了数据。前面说 过,这么高能的质子质子对撞,本质上是一个质子内 部的夸克、胶子与另一个质子内部的夸克、胶子的对 撞,对撞的结果主要也是夸克与胶子,最后碎裂成喷 注。这种末态是喷注的产生截面大约是 10⁻²⁵cm²,国际 上用靶 (barn,简称 b) 作为截面单位,1b=10⁻²⁴cm², 10⁻²⁵cm² 相当于 0.1b,积分亮度在 5fb⁻¹时,可以估计 事例数为 0.1b·5fb⁻¹=5×10¹⁴,因此已经是海量数据。在 这些数据中两个实验都在双光子不变质量谱和 4 轻子 不变质量谱相同区域 (120GeV~130GeV) 发现实验数 据事例数比本底预期有显著超出。但还不足以宣布发 现新粒子。

2012年1月,高能物理学家决定把对撞能量从 7TeV 增加到 8TeV,使得希格斯粒子的产生截面增 大 20%,并且质子束对撞次数增大。ATLAS 实验与 CMS 实验都受益于这个改变。这两个实验都非常谨 慎,采用盲法分析,即在重建算法与事件选择的判据 没有订下来前不看实验数据,以防产生人为的偏见。 截止到 2012年6月,ATLAS 对应 5.8fb⁻¹积分亮度 下收集了数据,CMS 对应 5.3fb⁻¹积分亮度下收集了 数据.从这些数据中 ATLAS 和 CMS 分别独立发现 了希格斯粒子。

4.1.1 希格斯粒子衰变到双光子的衰变道

在双光子末态寻找希格斯粒子其实是在双光子质 量谱上在 110GeV 到 150GeV 的区域寻找一个尖峰。 由于喷注的背景很大,该质量谱是一个连续下降的连 续谱,主要由背景事件组成,特别是夸克与反夸克的 湮灭成双光子的过程是无法压低的背景过程。来源于 喷注的假光子则是可以通过模式识别来压低的。CMS 高能所组提出创新的方案压低假光子,被 CMS 用于 希格斯粒子的发现上。

CMS 实验双光子末态的分析的结果见图 4a。在 双光子质量谱中,我们可以在 125GeV 的区域看到一 个尖峰。ATLAS 实验也看到类似结果。

图 4a CMS 实验所选取事例的以所在区间 S/(S+B) 加权的双光子不变 质量谱,图中线条代表拟合本底和预期信号的分布 (mu=125GeV)

图 4b ATLAS 实验 4 轻子不变质量的分布。黑点是数据,直方图是估计的本底。而蓝色直方图是期望的信号 (质量 125GeV)

4.1.2 H → ZZ → 4*l* 的衰变

通过 H \rightarrow ZZ \rightarrow 4*l* 的衰变寻找希格斯的特点是 4 个带电轻子的不变质量峰很窄,并且本底低。可以细 分成 4e, 4 μ 和 2e2 μ 这三道。本底包括不可压低的从 夸克反夸克对撞或者胶子胶子对撞产生 ZZ 再衰变到 4 轻子的过程。也包括一些可压低的本底过程.

图 4b 展示了 ATLAS 实验的 4 轻子不变质量的分 布。在 125GeV 附近看到了一个明显的峰。在 Z 质量 处也看到了另一个峰,原因是 Z 衰变到两个轻子,其 中一个轻子辐射出一个光子,然后再转换成一对轻子。 CMS 实验也有类似的结果。 4.1.3 结果的综合

希格斯的其他衰变道也进行了寻找,并且把结果 综合到了一起。综合结果在 2012 年 8 月分别被 ATLAS 和 CMS 发表。ATLAS 和 CMS 实验分别从 γγ 和 ZZ 这 两个衰变道独立发现了一个大质量玻色子,质量几乎 相同。ATLAS 看到的局部显著性是 6.0σ,期望值为 5.0σ。CMS 看到的局部显著性是 5.0σ,期望值为 5.8σ。

显著性代表了信号峰高出本底的显著程度。σ代 表本底的误差,显著性是 5.0σ代表信号峰超出本底 5 倍标准差,本底通过涨落达到这么高的峰的几率约是 10⁻⁷,也就是说几乎是不可能的。高能物理发现新粒 子的要求是显著性达到 5σ.因此 ATLAS 和 CMS 都分 别达到了发现新粒子的标准,宣布发现新粒子。

这个新粒子可以衰变到两个玻色子(两光子;两 Z 玻色子;两 W 玻色子),表明它是自旋不能为1的 玻色子。另外它衰变到两光子也意味着它的自旋可能 为0或者2。

ATLAS 合作组和 CMS 合作组展示的结果在误差 范围内是符合的,同时与标准模型的预言也相符合。 两个实验也注意到需要更多的数据来严格检验这一结 论是否正确,同时调查是否这个新粒子的性质意味着 超出标准模型的新物理。

4.2 用 2011 年和 2012 年全部数据寻 找希格斯粒子

2011 年的对撞能量为 7TeV,全年总积分亮度是 约 5fb⁻¹,2012 年的对撞能量为 8TeV,全年总积分亮 度是约 20fb⁻¹。大数据量可以证实新发现的玻色子的 存在,也可以观察除 H \rightarrow ZZ \rightarrow 4*l*和 H $\rightarrow \gamma\gamma$ 以外的 衰变道,同时也能首次实质性的测量这个新玻色子的 性质。

4.2.1 衰变到玻色子: H → γγ, H → ZZ → 4l,
和 H → WW → 2l2ν 的衰变模式

图 5a 展示的是 ATLAS 实验 H $\rightarrow \gamma\gamma$ 的结果, 图 5b 展示的则是 CMS 实验 H $\rightarrow ZZ \rightarrow 4l$ 的结果。 信号是不容置疑的,显著性有了提高,结果见表1在 125GeV 处事例的超出是更加明显了。

通过 H → WW 寻找希格斯粒子。要求两个 W 都 衰变到轻子加中微子。由于中微子不可探测,事例还 伴随大横动量丢失。将事例分成 e^+e^- , $\mu^+\mu^-$ 和 $e\mu$, 同

图 5a ATLAS 实验双光子事例的不变质量分布。图中也展示了多项式 本底与信号叠加在一起进行拟合的结果。底下展示的是扣除本底以后的 分布

图 5b CMS 实验 4 轻子不变质量的分布。黑点是数据,直方图是估计的本底。而红色直方图是期望的信号

时根据喷注数来分类,分成0喷注和1喷注,可以提高信号的灵敏度。主要本底来自于不可压低的非共振 WW 过程。

图 6 展示的是 CMS 实验 0 喷注 eµ 末态 eµ 的不 变质量分布。图中也展示了质量为 125GeV 的标准模 型希格斯期望的不变质量分布。清楚地表明事例的超 出与质量为 125GeV 的希格斯的期望相符合。观测到 的和期望的显著性请见表 1.

	ATLAS		CMS	
实验衰变模式综合	期望值 (σ)	测量值 (σ)	期望值 (σ)	测量值 (σ)
γγ	4.6	5.2	5.3	5.6
ZZ	6.2	8.1	6.3	6.5
WW	5.8	6.1	5.4	4.7
bb	2.6	1.4	2.6	2.0
ττ	3.4	4.5	3.9	3.8
$\tau\tau$ +bb ²⁶	-	-	4.4	3.8

表1 对于不同的希格斯衰变模式,ATLAS和CMS实验观测到的和期望的显著性,用标准差的倍数来表示。拟合中使用"只 有木底" 假设 并设定委格斯质量为 125CeV

4.2.2 衰变到费米子: H→ττ和H→bb衰变
模式

前面分析过, H → ττ 的寻找要比 H → WW 寻找 难。τ 可以衰变成电子或缪子加两个中微子,也能衰 变成强子加一个中微子。所以要求事例末态包含 $e\mu$, $\mu\mu$, $e\mu_h$, $\mu\tau_h$, τ_h 表示 τ 的强子衰变产物。在分 析中,主要的不可去本底, Z → ττ,和最大的可去本 底 (W+jets,多 jets 产生过程)是用数据中各种控制样 本来估计。

CMS 和 ATLAS 合作组报告了希格斯玻色子衰 变到 $\tau\tau$ 轻子对的证据。其结果见于表 1。CMS 更新 了其研究,在 $\tau\tau$ 衰变分析中。这个分析中 H \rightarrow $\tau\tau$ 和 H \rightarrow WW 的贡献都被认为是信号。这样的处理提高了 探测希格斯玻色子衰变到 $\tau\tau$ 和 WW 的灵敏度。尽管 bb 道很难,但 ATLAS 和 CMS 也都做了分析。在目 前数据统计精度下,CMS 通过 H \rightarrow $\tau\tau$ 和 H \rightarrow bb 过

图 6 CMS 实验 0 喷注 eµ 末态的 eµ 不变质量分别。红色直方图表示质量为 125GeV 的标准模型希格斯的衰变: H→WW→ hh, 其他颜色的 直方图代表一些主要本底的贡献 程寻找希格斯玻色子的结果相互一致,并且符合标准 模型希格斯玻色子产生和衰变的预期。分析相同的数 据,CMS 合并了这两个独立的测量结果。

表1总结了 ATLAS 和 CMS 实验各个衰变道 125 GeV 标准模型希格斯玻色子期望和观测的显著性。两 个实验相互印证在 125GeV 附近发现一个新粒子。

4.3 ATLAS 和 CMS 合作组 RUN I 数据 合并的结果

4.3.1 希格斯玻色子质量

ATLAS 和 CMS 都分别合并了它们 H → $\gamma\gamma$ 和 H → ZZ → 4*l* 道的 Higgs 质量测量结果,这两个道 具有最好的希格斯粒子质量分辨。在所有的分析道 中,信号都认为具有确定的质量, m_{x^o} 合并的结果 是:ATLAS: m_{H} =125.36+0.37(stat)±0.18 (syst)GeV, CMS: m_{H} =125.02+0.27(stat)±0.14(syst)GeV, 两个实 验结果符合得非常好。

4.3.2 新粒子和标准模型希格斯玻色子假设的一致性: 信号强度

要想知道新发现的粒子是否是标准模型的希格 斯玻色子,必须精确测量其性质。为此,ATLAS和 CMS做了一些新粒子和标准模型希格斯玻色子预言一 致性的检验。

一个比较是信号强度 μ=σ/σ_{sM},即测量到的产生 截面和标准模型预期的产生截面的比值。分析中对每 个衰变道和所有衰变道合并的结果都进行了信号强度 μ值的比较。信号强度μ值为1意味着是标准模型希 格斯粒子。

ATLAS 和 CMS 都通过不同衰变模式和额外标 记的特定产生机制过程测量了 μ 值。CMS 的观测 μ 值是 1.00±0.09(stat)±0.08(theo), ATLAS 的观测值是 1.30±0.20。两个实验的μ值和标准模型希格斯玻色子的预期(μ=1)相一致。

4.3.3 希格斯玻色子的耦合

所谓耦合也就是相互作用的强度。图 7 表明了 希格斯玻色子耦合对于衰变粒子 (τ , b 夸克, W, Z 和 t 夸克)质量的依赖关系。图 7 中这一耦合用 λ 和 $\sqrt{(g/2v)}$ 项来表示,图中的直线是标准模型的期望 值。对于费米子,图 7 显示了拟合的Yukawa 耦合 Hff 的 λ 值,对于矢量玻色子,显示了HVV(V 代表W 或 者 Z)项点除以两倍的希格斯玻色子场的真空期望值的 耦合平方根 $\sqrt{(g/2v)}$ 。对于衰变到 $\mu\mu$ 的 125GeV 的希 格斯玻色子,CMS 发现观测的 (期望的)产生上限是 7.4(6.5+2.8, -1.9)。它对应分支比上限为 0.0016。如 标准模型所描述的那样,从 τ 轻子质量 (大约 1.8GeV) 到 t 夸克质量 (比 τ 轻子质量大约 100 倍)的很宽的一 个质量范围内,耦合常数正比于粒子质量。测量值与 标准模型预言在误差范围内一致。

4.3.4 自旋和宇称

鉴别这个新发现的玻色子是否就是 Higgs 粒子的 另一个关键是确定它的量子数,这里也就是自旋-宇称(パ)。这个玻色子的自旋-宇称决定了衰变粒子的 角分布,反过来可以用衰变粒子的角发布来测定这个 玻色子的自旋-宇称。

CMS 介绍了它对 ZZ → 4*l* 的第一次研究,数据 不支持纯赝标假设。他们将 ZZ → 4*l* 和 WW → *lvlv* 放

图 7 CMS 实验拟合的对于质量为 125GeV 的希格斯玻色子,耦合常数 λ 和√(g/2v)相对标准模型预言的偏差与粒子质量的关系

在一起进行自旋分析,数据支持观测到的玻色子 $J^{P}=0^{+}$ 的假设,而不支持其他的假设,如该玻色子由胶子相熔合过程中最小耦合产生,它像引力子一样有 $J^{P}=2^{+}$,这种假设的置信度只有 0.60%。

ATLAS 也介绍了对 Higgs 玻色子候选者自旋的研究,他们将 H $\rightarrow \gamma\gamma$, H \rightarrow WW $\rightarrow hvhv$, H \rightarrow ZZ $\rightarrow 4l$ 这 3 个衰变道放在一起去鉴别标准模型的预先设置 $J^{2}=0^{+}$ 和一个特别的模型 $J^{2}=2^{+}$ 。数据强力支持 $J^{2}=0^{+}$ 假设。具体的假设 $J^{2}=2^{+}$ 被排除的置信度在 99.9%以上, 不管这个自旋为 2 的粒子是产生于胶子相熔合过程还 是夸克反夸克湮灭过程。

以上提到的结果显示两个实验都强力地支持自旋 -宇称 $J^{=}0^{+}$ 的假设,而别的假设 $J^{=}0^{-}$, 1⁺, 1⁻, 2⁺ 被 排除的置信度在 97.8% 以上。

5. 总结和展望

两个实验的结果显示标量 Higgs 玻色子已经被 发现。它似乎是一个基本粒子,它的自旋-宇称和它 与标准模型其他粒子的相互作用强度符合标准模型对 Higgs 玻色子的预言。

虽然两个实验对这个新发现粒子性质的确认取 得了巨大的进步,依然存在几个显著的疑问。这些 疑问包括宇宙的组成成分,什么是暗物质,物质和 反物质不对称的缘由,中微子质量的起源,Higgs 玻 色子质量轻的诱因,引力比起别的力绝对弱小。大 家都期待这次的发现是通向非标准模型物理的一个 入口。物理学家正殷切地希望这些疑问被LHC 第 二次运行解决(LHC 第二次运行开始于 2015 春节, 此时束流能量是 LHC 第一次运行时的两倍),或被 随后的高亮度 LHC 解决(它的目标是积分亮度达 3000fb⁻¹)或被将来可能的对撞机解决。LHC 的物理 探索刚开始,在未来的数十年中,新的发现将达到 一个高潮。

摘译自 60 Years of CERN Experiments and Discoveries 中 Peter Jenni 和 Tejinder S. Virdee 所 著 的 The Discovery of the Higgs Boson at the LHC。希望了解 更多细节的读者也可参考"CERN60年的实验与发现" 中译本(将于近期由科学出版社出版)的相应章节。