光导效应与光敏器件

史延龄 李汉军 颜 冬 (徐州工程兵指挥学院 221004)

光敏电阻、光敏二极管、光敏三极管等是利用半导体的光导效应制成的光敏器件.由于它们体积小、灵敏度高、性能稳定、寿命长、价格低,在自动控制、工业测量和家用电器中得到了广泛应用.如、目前用得最广泛的红外线遥控器、光控音乐石英钟等.本文从光导效应出发介绍光敏电阻、光敏二极管、光敏三极管的原理及应用.

一、光导效应

由物理学光的粒子性可知,光是一束以光 速运动的粒子流,这些粒子称为光子,每个光 子具有一定的能量,其大小等于普朗克常数乘 以光的频率, 当用光照射半导体时, 原子中的. 价电子吸收光子能量后,被激发出来而成为自 由电子,同时也产生空穴,此外,若半导体中掺 有的杂质原子处在还没有全部电离的温度范围 内,即有的杂质原子还没有给出电子或空穴,光 照射也能使这些杂质原子吸收光子能量后激发 出电子或空穴, 这些自由电子和空穴(光生载流 子), 使半导体材料的导电能力大大增强, 即电导 率增加, 这种现象称为光电导效应, 简称光导效 应. 具有光导效应的材料称为光导体. 除金属 外, 大多数半导体和绝缘材料都具有光导效应, 但都很小, 实际上只有少数几种材料能用来制造 光敏电阻、光敏二极管、光敏三极管等光敏器件.

二、光敏器件的原理

1. 光敏电阻

表 1 国产硅光敏二极管参数

The state of the s										
型号	最高反压	暗电流	光电流	型号	最高反压	暗电流	光电流			
	(V)	(μ A)	(μ A)		(V)	(μ A)	(μΑ)			
2CU1A	10	<0.2	>80	2CU2A	10	<0.1	>30			
2CU1B	20	<0.2	>80	2CU2B	20	<0.1	>30			
2CU1C	30	<0,2	>80	2CU2C	30	<0.1	>30			
2CUID	40	<0.2	>80	2CU2D	40	<0.1	>30			
2CU1E	50	<0.2	>80	2CU2E .	50	<0.1	>30			
				2CU5	12	<0.1	>15			

光敏电阻是利用半导体的光导效应制成的 没有极性的电阻器件. 它的结构很简单,由于 光导效应只限于光照的物体表面薄层,因此把 掺杂的半导体薄膜(光导体)沉积在绝缘基底 上,再从两端引出两个电极就成了光敏电阻. 在受光时,半导体受光照产生空穴和电子,从而 使半导体的电阻率发生变化. 光照强度越强, 电阻就越小. 目前生产的光敏电阻主要是硫化 镉(CdS)光敏电阻. 为提高 CdS 光敏电阻的光 灵敏度,在 CdS 中掺入铜、银等杂质.

将光敏电阻置于室温、无光照射的全暗条件下,经过一定稳定时间后,测得的阻值称暗电阻(几兆欧一几百兆欧). 光敏电阻在光照射下,测得的电阻值称亮电阻(几十千欧以下). 暗、亮电阻值之差越大,光敏电阻性能越好,灵敏度也越高.

2. 光敏二极管

光敏二极管的材料与结构和普通半导体二极管类似,它的管芯是一个具有光敏特性的PN结,封装在透明玻璃壳内. PN结装在管顶部,其上面有一个透镜制成的窗口,便于人射光集中在PN结的敏感面上.

光敏二极管在反向电压下工作,当无光照射时,与普通二极管一样仅有很小的反向电流(称暗电流),相当于二极管截止;当有光照射时,PN结附近受光子的轰击,半导体内的价电子吸收光子能量被激发产生电子空穴对,使反向电流大大增加,形成光电流,这时相当于光敏二极管导通.

国产硅光敏二极管参数列于表 1. 它的灵敏波长范围在 0.5~1.0 微米, 峰值波长为 0.8 微米, 响应时间不小于 10⁻⁷ 秒(负载 1 千欧); 表中光电流是在光照为 1000 勒、负载为零、电压为 10

伏条件下的测量值.

3. 光敏三极管

光敏三极管与反向 电压使用的光敏二极管 外型相似,通常只有两 个引出极,但光敏三极 管管芯有两个 PN 结. 光敏三极管可看成普通

三极管的集电结用光敏二极管替代的结果.

光敏三极管电源极性的接法与普通三极管相同,即集电结反偏,发射结正偏,但基极开路. 当无光照射时,集电结因反偏,集基极间有反向饱和电流 Icbo,该电流流入发射结放,使集射之间有穿透电流· $I_{ceo} = (1+\beta)I_{cbo}$,此即集全结附近的基区时,激发产生的电子空穴,以即电结附近的基区时,激发产生的电流流、较大力。 当有光敏三极管的光电流、较大力。 是我们成为光敏三极管是利用类似普通大理的放大作用,将光敏二极管的光电流(较大)。 已报行成为光敏三极管是利用类似普通大理的放大作用,将光敏二极管的光电流方,所以光敏三极管比光敏二极管具有更高的灵敏度.

3DU 型光敏三极管的参数列于表 2.

表 2 3DU 型光敏三极管参数

表 2 300 空元敬二依曾多致									
型号	}	反向击穿电压 (V)	最高工作电压 (V)	暗电流 (μ A)	光 电 流 (mA)				
3DU1	11	>15	>10						
3DU1	12	>45	>30	i	0.5~1.0				
3DU1	13	>75	>50						
3 D U12	21	>15	>10						
3 D U12	22	>45	>30	<0.3	1.0~2.0				
3DU12	23	>75	>50						
3 D U13	31	>15	>10						
3DU13	32	>45	>30		>2.0				
3DU13	33	>75	>50						
试验	砼	$I_{\infty} = 0.5 \mu A$	I∞=暗电流	无光照	$V_{\infty} = 10V$				
条件	#				$E = 1000L_x$				

三、光敏器件的应用

光敏电阻、光敏二极管、光敏三极管等光敏器件应用非常广泛,这里介绍几种光敏器件的具体应用.

1. 反射式表面缺陷传感器

反射式表面缺陷传感器工作原理示意图如图 1 所示. 图中待检测工件表面光滑时,由光源发射的光线经透镜会聚在待检测工件表面,其反射光经透镜恰好入射到光敏器件;若待检测工件表面有缺陷时,反射光偏离原来光路,无法入射到光敏器件上,使其发出物体表面有缺陷信号.

2. 液位检测器

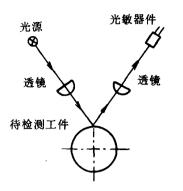


图1 反射式表面缺陷传感器原理图 接收;当液位上升到发光二极管及光敏三极管平面时,由于液体的折射,光敏三极管接收到红外线,从而获得液位信号.

图 2 液位检测器

3. 转速测量

图 3 是转速测量工作原理简图. 在被测电机的轴上固定一个光码盘(带孔圆盘或齿轮状圆盘),它将光源发出的恒定光调制成随时间变化的调制光. 光每照射到光敏器件一次,光敏器件所在电路就导通一次,产生一个电脉冲信号. 这种连续不断的电脉冲经过放大整形电路,然后用数字频率计测出电脉冲的频率,从而得到电机的转速.

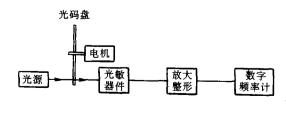


图 3 转速测量原理图