超导材料简介
-
摘要: 超导是凝聚态物质中首个发现的宏观量子现象,对基础科学和应用研究都有巨大的意义。超导材料具备独特的绝对零电阻、完全抗磁性和磁通量子化等性质,在能源电力、交通运输、医疗健康、保密通讯、高效计算、基础科研等各领域都有不可替代的关键应用[1]。在超导研究的百余年历史上,科学家们先后发现数万种超导材料,几乎覆盖无机材料中的各类单质和化合物,以及少部分有机导体材料等[2]。近年来,不断有新超导材料涌现,甚至掀起了“室温超导”的探索热潮,超导研究也步入了一个崭新的阶段。在此,本文主要介绍超导的基本性质和各类超导材料,特别是近些年发现的各种新型超导家族。
-
-
[1] 章立源. 超越自由:神奇的超导体[M], 科学出版社, 2005. [2] 罗会仟, 超导“小时代”——超导的前世、今生和未来[M], 清华大学出版社, 2022. [3] Onnes H K. Further experiments with liquid helium: the resistance of pure mercury at helium temperature.[J]. Commun. Phys. Lab. Univ. Laiden, 1913,133d.
[4] de B. Ouboter R. Heike Kamerlingh Onnes’s Discovery of Superconductivity[J]. Scientific American, 1997,03:98-103.
[5] Meissner W, Ochsenfeld R. Ein neuer Effekt bei eintritt der Supraleitfähigkeit[J]. Naturwissenschaften, 1933, 21: 787.
[6] 张裕恒. 超导物理[M]. 合肥:中国科学技术大学出版社, 1997. [7] van Delft D and Kes P. The discovery of superconductivity[J]. Physics Today 2010, 63(9): 38-43.
[8] Geim A. Everyone's Magnetism [J]. Physics Today, 1998, 9: 36-39.
[9] Bardeen J, Cooper L N, Schrieffer J R. Microscopic Theory of Superconductivity[J]. Phys. Rev., 1957, 106(1): 162-164.
[10] Bardeen J, Cooper LN, Schrieffer J R. Theory of Superconductivity[J]. Phys. Rev., 1957, 108(5): 1175-1204.
[11] Josephson B D. Possible new effects in superconductive tunnelling[J]. Phys. Lett. 1962, 1: 251-253.
[12] Anderson P W and Rowell J M. Probable Observation of the Josephson Superconducting Tunneling Effect [J]. Phys. Rev. Lett. 1963, 10: 230-232.
[13] Ginzburg V L and Landau L D. On the Theory of Superconductivity[J]. Sov. Phys. JETP, 1950, 20: 1064.
[14] Abrikosov A A. Magnetic properties of superconductors of the second group[J]. J. Exp. Theor. Phys., 1957, 32:1442.
[15] 闻海虎. 高温超导体磁通动力学和混合态相图(I)[J]. 物理, 2006, 35(1):16. [16] 闻海虎. 高温超导体磁通动力学和混合态相图(II)[J]. 物理, 2006, 35(2):111. [17] Tinkham M. Introduction to superconductivity[M]. 2nd edition, New York: Dover Publications Inc., 2004.
[18] 百度百科, 超导体, https://baike.baidu.com/item/%E8%B6%85%E5%AF%BC%E4%BD%93/645498?fr=ge_ala. [19] 罗会仟, 镍氧化物:高温超导的新希望![J]. 返朴,2023-07-13. https://baijiahao.baidu.com/s?id=1771270952990854225&wfr=spider&for=pc. [20] 罗会仟, 周兴江. 神奇的超导[J]. 现代物理知识, 2012, 24(2): 30-39. [21] He X. et al., Superconductivity above 30 K Achieved in Dense Scandium[J]. Chin. Phys. Lett. 2023, 40:107403.
[22] Ying J. et al., Record High 36 K Transition Temperature to the Superconducting State of Elemental Scandium at a Pressure of 260 GPa[J]. Phys. Rev. Lett.2023, 130:256002.
[23] Schrieffer J R, Brooks J S. Handbook of High-Temperature Superconductivity [M], Springer, 2007.
[24] Coleman P. Heavy Fermions:Electrons at the edge of magnetism. In:Handbook of Magnetism and Advanced Magnetic Materials [M]. New York:Wiley, 2007.
[25] 杨义峰. 重费米子材料中的反常物性[J]. 物理, 2014, 43(2):80-87. [26] Jérome D, Mazaud A, Ribault M, Bechgaard K, Superconductivity in a synthetic organic conductor (TMTSF)2PF6[J]. J. Phys.Lett., 1980, 41: L95-L98.
[27] Hertler W R et al. Cyanocarbons—Their History From Conducting to Magnetic Organic Charge Transfer Salts[J]. Molecular Crystals and Liquid Crystals,1989, 171: 205-216.
[28] Cao Y et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556:43.
[29] Buzea C, Yamashita T. Review of the superconducting properties of MgB2[J]. Supercond. Sci. Technol., 2001, 14: R115-R146.
[30] Pei C. et al., Pressure-induced superconductivity at 32 K in MoB2[J]. Natl Sci Rev. 2023, 10:nwad034.
[31] 高淼, 卢仲毅, 向涛. 通过金属化σ电子寻找高温超导体[J]. 物理. 2015. 44:421-426. [32] Bednorz J G and Müller K A. Possible high Tc superconductivity in the Ba-La-Cu-O system[J]. Z. Phys. B, 1986, 64: 189.
[33] 赵忠贤等. Ba-Y-Cu氧化物液氮温区的超导电性[J]. 科学通报, 1987, 32: 412-414. [34] Wu M K et al. Superconductivity at 93 K in a new mixed-phase YBa-Cu-O compound system at ambient pressure[J]. Phys. Rev. Lett., 1987, 58:908-910.
[35] 周午纵, 梁维耀. 高温超导基础研究[M].上海:上海科学技术出版社, 1999. [36] 童淑云, 蔡传兵. 临界温度高于110 K氧化物超导体的种类和特性[J]. 物理学进展,2023,43(3):68-83. [37] 罗会仟. 铁基超导的前世今生[J]. 物理,2014,43(7): 430-438. [38] 马廷灿, 万勇, 姜山.铁基超导材料制备研究进展[J].科学通报, 2009, 54(5):557-568. [39] Liu X et al. Electronic structure and superconductivity of FeSe-related superconductors[J]. J. Phys.: Condens. Matter, 2015, 27: 183201.
[40] He S L et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films[J]. Nat. Mater., 2013, 12: 605.
[41] 王猛,液氮温区镍氧化物高温超导体的发现[J],物理. 2023. 52(10): 663-671. [42] Gu, Q. Wen, H.-H. Superconductivity in nickel-based 112 systems [J]. The Innovation. 2022. 3(1):100202.
[43] Wang N.N, et al., Pressure-induced monotonic enhancement of Tc to over 30 K in superconducting Pr0.82Sr0.18NiO2 thin films[J]. Nature Commun. 2022. 13: 4367.
[44] Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure[J]. Nature. 2023. 621: 493-498.
[45] Z. Y. Liu et al., Pressure-induced superconductivity up to 9 K in the quasi-one-dimensional KMn6Bi5[J], Phys. Rev. Lett.,2022. 128:187001.
[46] Cheng J. et al., Superconductivity in a layered cobalt oxychalcogenide Na2CoSe2O with a triangular lattice[J]. J. Am. Chem. Soc. 2024, 146:5908-5915.
[47] Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5[J]. Phys. Rev. Mater.,2019. 3: 094407.
[48] Liu Y. et al., Superconductivity emerging from density-wave-like order in a correlated kagome metal[J]. arXiv:2309.13514.
[49] Nie J.Y. et al., Pressure-induced double-dome superconductivity in kagome metal CsTi3Bi5[J]. arXiv:2309.13514.
[50] Jiang K. et al., Kagome superconductors AV3Sb5(A = K, Rb, Cs) [J]. Natl. Sci. Rev.,2023. 10: nwac199.
[51] Pereiro J. et al., Interface superconductivity: History, development and prospects[J], Physics Express,2011. 1:208-241.
[52] Ohtomo A., Hwang H. Y., A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface[J]. Nature. 2004, 427:423-426.
[53] Peng R. et al., Tuning the band structure and superconductivity in single-layer FeSe by interface engineering[J]. Nat. Commun., 2014. 5:5044.
[54] Yi H. et al., Interface-induced superconductivity in magnetic topological insulators[J]. Science 2024. 383:634-639.
[55] Liu, C. et al., Two-dimensional superconductivity and anisotropic transport at KTaO3(111) interfaces[J]. Science 2021. 371:716-721.
[56] Drozdov A P et al., Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system[J]. Nature, 2015, 525:73-76.
[57] Zhong X et al., Theory-directed discovery of high-temperature superconductivity in clathrate hydrides at high pressure[J]. The Innovation 2022. 3(2):100226.
[58] 单鹏飞,王宁宁, 孙建平,程金光. 富氢高温超导材料[J]. 物理, 2021,50(4): 217-227. [59] 孙莹, 刘寒雨, 马琰铭. 高压下富氢高温超导体的研究进展[J]. 物理学报,2021,70(1): 017407. [60] Zhang Z. et al., Design Principles for High-Temperature Superconductors with a Hydrogen-Based Alloy Backbone at Moderate Pressure[J]. Phys. Rev. Lett.,2022. 128: 047001.
[61] Song Y. et al., Stoichiometric Ternary Superhydride LaBeH8 as a New Template for High-Temperature Superconductivity at 110 K under 80 GPa[J]. Phys. Rev. Lett., 2023. 130, 266001.
[62] Snider E et al. Room-temperature superconductivity in a carbonaceous sulfur hydride[J]. RETRACTED ARTICLE. Nature, 2020, 586: 373.
[63] N.Dasenbrock-Gammon et al., Evidence of near-ambient superconductivity in a N-doped lutetium hydride[J]. RETRACTED ARTICLE. Nature 2023. 615:244-250.
[64] Drozdov A P et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569:528.
[65] He Y. et al., Enhancement for phonon-mediated superconductivity up to 37 K in few-hydrogen metal-bonded layered magnesium hydride under atmospheric pressure[J]. Phys. Chem. Chem. Phys., 2024. 25: 21037-21044.
计量
- 文章访问数: 278
- HTML全文浏览量: 21
- PDF下载量: 97