太赫兹超导探测器与宇宙探测

缪巍, 任远, 张文, 李婧, 史生才

缪巍, 任远, 张文, 李婧, 史生才. 太赫兹超导探测器与宇宙探测[J]. 现代物理知识, 2025, 37(1): 28-39.
引用本文: 缪巍, 任远, 张文, 李婧, 史生才. 太赫兹超导探测器与宇宙探测[J]. 现代物理知识, 2025, 37(1): 28-39.

太赫兹超导探测器与宇宙探测

  • 摘要: 近年来,太赫兹天文学备受关注,已成为现代天文学中引人瞩目的研究领域之一。其主要原因在于太赫兹波段为科学家提供了全新而激动人心的探索宇宙的途径,开启了我们对宇宙更深层次的认知。首先,太赫兹波段(0.1~10 THz)携带了除宇宙微波背景辐射以外近一半的光子能量,其对应的黑体辐射温度范围为5~500 K,特别适合用于观测处于形成阶段的冷暗天体,为深入地理解星系形成与演化、恒星及行星形成等前沿科学问题提供了独特的观测手段。其次,太赫兹波段具备穿透星际尘埃的特殊能力,使其能够直接观测到遥远宇宙中的天体,这为我们解开宇宙演化之谜提供了独特的视角,不仅有助于理解极高红移早期宇宙的形成和演化,同时为研究宇宙大尺度结构提供了关键信息。另外,太赫兹波段存在丰富的分子转动谱线和原子精细结构谱线,同时许多有机分子谱线也位于太赫兹波段,这些谱线对于研究星际介质物质及能量循环以及宇宙生命起源等方面具有重要意义。总体上,太赫兹波段天文观测在天体物理和宇宙学研究中扮演着不可替代的角色,太赫兹天文学正在迅速发展成为现代天体物理的前沿研究领域之一。
  • [1]

    J.R. Tucker and M.J. Feldman, Quantum detection at millimeter wavelengths, Reviews of Modern Physics, vol. 57, no. 4, pp. 1055- 1113, 1985.

    [2]

    E.M. Gershenzon, G.N. Goltsman, I.G. Gogidze, et al., Millimeter and submillimeter range mixer based on electronic heating of superconducting films in the resistive state, Soviet Physics Superconductivity, vol. 3, pp. 1582-1597, 1990.

    [3]

    K.D. Irwin and C.G. Hilton, Transition- edge sensors, Cryogenic particle detection, Berlin: Springer, pp. 63-150, 2005.

    [4]

    P. Day, H. LeDuc, B. Mazin, et al., A broadband superconducting detector suitable for use in large arrays, Nature, vol. 425, pp. 817– 821, 2003.

    [5]

    W. Miao, F.M. Li, Z.Z. He, et al., Demonstration of a high-sensitivity and wide- dynamic- range terahertz graphene hot- electron bolometer with Johnson noise thermometry, Applied Physics Letter, vol. 118, p. 013104, 2020.

    [6]

    W. Miao, F.M. Li, Q.H. Luo, et al., A terahertz detector based on superconductor-graphene-superconductor Josephson junction, Carbon, vol. 202, pp. 112-117, 2023.

    [7]

    J. Li, M. Takeda, Z. Wang, et al., Low-noise 0.5 THz all-NbN superconductor- insulator- superconductor mixer for submillimeter wave astronomy, Applied Physics Letter, vol. 92, p. 222504, 2008.

    [8]

    C.L. Brogan, L.M. Pérez, T.R. Hunter, et al., The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region, The Astrophysical journal letters, vol. 808, no. 1, pp. L3, 2015.

    [9]

    K. Akiyama, A. Alberdi, W. Alef, et al., First M87 event horizon telescope results. I. the shadow of the supermassive black hole, The Astrophysical Journal Letters, vol. 875, no.1, 2019.

    [10]

    W. Miao, F.M. Li, H. Gao, et al., Linear and nonlinear flux-flow behaviors in superconducting hot electron bolometer mixers, Applied Physics Letter, vol. 118, p. 112602, 2021.

    [11]

    K.M. Zhou, W. Miao, Z. Lou, et al., A 1.4 THz quasi-optical NbN superconducting HEB mixer developed for the DATE5 Telescope, IEEE Transactions on Applied Superconductivity, vol. 25, no. 3, p. 2300805, 2015.

    [12]

    R. Gusten, H. Wiesemeyer, D. Neufeld, et al., Astrophysical detection of the helium hydride ion HeH +, Nature, vol. 568, no. 7752, pp. 357-359, 2019.

    [13]

    https://cmb-s4.org.

    [14]

    Q.H. Luo, J.Q. Zhong, W. Miao, et al., A 220 GHz superconducting titanium transition edge sensor array developed for cosmic microwave background experiments, Superconductor Science and Technology, vol. 36, p. 115004, 2023.

    [15]

    R. Adam, A. Adane, P.A.R. Ade, et al, The NIKA2 large-field-ofview millimeter continuum camera for the 30m IRAM telescope, Astronomy & Astrophysics, vol. 609, no. A115, 2018.

    [16]

    T. Takekoshi, K. Karatsu, J. Suzeki, et al., DESHIMA on ASTE: on-sky responsivity calibration of the integrated superconducting spectrometer, Journal of Low Temperature Physics, vol. 199, pp. 231-239, 2020.

    [17]

    Q. Shi, J. Li, Q. Zhi, et al., Terahertz superconducting kinetic inductance detectors demonstrating photon- noise- limited performance and intrinsic generation-recombination noise, Science China Physics, Mechanics & Astronomy, vol. 65, p. 239511, 2022.

计量
  • 文章访问数:  14
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程

目录

    /

    返回文章
    返回